×

Stochastic evolution equations with Lévy noise in the dual of a nuclear space. (English) Zbl 1540.60085

Summary: In this article we give sufficient and necessary conditions for the existence of a weak and mild solution to stochastic evolution equations with (general) Lévy noise taking values in the dual of a nuclear space. As part of our approach we develop a theory of stochastic integration with respect to a Lévy process taking values in the dual of a nuclear space. We also derive further properties of the solution such as the existence of a solution with square moments, the Markov property and path regularity of the solution. In the final part of the paper we give sufficient conditions for the weak convergence of the solutions to a sequence of stochastic evolution equations with Lévy noises.

MSC:

60G51 Processes with independent increments; Lévy processes
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H05 Stochastic integrals
60G17 Sample path properties
60B12 Limit theorems for vector-valued random variables (infinite-dimensional case)

References:

[1] Albanese, AA; Bonet, J.; Ricker, WJ, Mean ergodic semigroups of operators, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 106, 2, 299-319, 2012 · Zbl 1283.47016
[2] Albeverio, S.; Rüdiger, B., Stochastic integrals and the Lévy-Itô decomposition theorem on separable Banach spaces, Stoch. Anal. Appl., 23, 2, 217-253, 2005 · Zbl 1071.60032
[3] Alvarado-Solano, AE; Fonseca-Mora, CA, Stochastic integration in Hilbert spaces with respect to cylindrical martingale-valued measures, ALEA Lat. Am. J. Probab. Math. Stat., 18, 2, 1267-1295, 2021 · Zbl 1469.60172
[4] Applebaum, D.: Martingale-valued measures, Ornstein-Uhlenbeck processes with jumps and operator self-decomposability in Hilbert spaces. In: Memoriam Paul-André Meyer. Séminaire de Probabilités 39, Lecture Notes in Mathematics 1874, pp. 171-197 (2006) · Zbl 1133.60020
[5] Applebaum, D.; Riedle, M., Cylindrical Lévy processes in Banach spaces, Proc. Lond. Math. Soc. (3), 101, 3, 697-726, 2010 · Zbl 1210.60012
[6] Babalola, VA, Semigroups of operators on locally convex spaces, Trans. Am. Math. Soc., 199, 163-179, 1974 · Zbl 0263.47031
[7] Bogachev, VI, Measure Theory, 2007, Springer · Zbl 1120.28001
[8] Bojdecki, T.; Gorostiza, LG, Langevin equations for \({\mathscr{S}}^{\prime } \)-valued Gaussian processes and fluctuation limits of infinite particle systems, Probab. Theory Relat Fields, 73, 227-244, 1986 · Zbl 0595.60096
[9] Bojdecki, T.; Gorostiza, LG, Gaussian and non-Gaussian distribution-valued Ornstein-Uhlenbeck processes, Can. J. Math., 43, 6, 1136-1149, 1991 · Zbl 0753.60037
[10] Bojdecki, T.; Gorostiza, LG, Self-intersection local time for \({\cal{S} }^{\prime }(\mathbb{R}^d)\)-Wiener processes and related Ornstein-Uhlenbeck processes, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2, 4, 569-615, 1999 · Zbl 1043.60508
[11] Bojdecki, T.; Gorostiza, LG, Self-intersection local time for some \({\mathscr{S}}^{\prime }(\mathbb{R}^d)\)-Ornstein-Uhlenbeck processes related to inhomogeneous fields, Math. Nachr., 228, 47-83, 2001 · Zbl 0988.60072
[12] Bojdecki, T.; Jakubowski, J., Invariant measures for generalized Langevin equations in conuclear space, Stoch. Proc. Appl., 84, 1-24, 1999 · Zbl 0997.60067
[13] Da Prato, G.; Zabczyk, J., Encyclopedia of mathematics and its applications, Stochastic Equations in Infinite Dimensions, 1992, Cambridge University Press · Zbl 0761.60052
[14] Dawson, DA; Fleischmann, K.; Gorostiza, LG, Stable hydrodynamic limit fluctuations of a critical branching particle system in a random medium, Ann. Probab., 17, 3, 1083-1117, 1989 · Zbl 0694.60078
[15] Dawson, DA; Gorostiza, LG, Generalized solutions of a class of nuclear-space-valued stochastic evolution equations, Appl. Math. Optim., 22, 3, 241-263, 1990 · Zbl 0714.60048
[16] Dirksen, S., Itô isomorphisms for \(L^p\)-valued Poisson stochastic integrals, Ann. Probab., 42, 6, 2595-2643, 2014 · Zbl 1308.60068
[17] Dirksen, S.; Maas, J.; van Neerven, J., Poisson stochastic integration in Banach spaces, Electron. J. Probab., 18, 100, 28, 2013 · Zbl 1285.60049
[18] Falb, PL; Jacobs, MQ, On differentials in locally convex spaces, J. Differ. Equ., 4, 444-459, 1968 · Zbl 0169.46903
[19] Fernández, B.; Gorostiza, LG, Stability of a class of transformations of distribution-valued processes and stochastic evolution equations, J. Theoret. Probab., 5, 4, 661-678, 1992 · Zbl 0762.60053
[20] Fonseca-Mora, CA, Existence of continuous and Càdlàg versions for cylindrical processes in the dual of a nuclear space, J. Theoret. Probab., 31, 2, 867-894, 2018 · Zbl 1405.60005
[21] Fonseca-Mora, CA, Stochastic integration and stochastic PDEs driven by jumps on the dual of a nuclear space, Stoch. PDE Anal. Comput., 6, 4, 618-689, 2018 · Zbl 1435.60043
[22] Fonseca-Mora, CA, Lévy processes and infinitely divisible measures in the dual of a nuclear space, J. Theoret. Probab., 33, 2, 649-691, 2020 · Zbl 1450.60004
[23] Fonseca-Mora, CA, Tightness and weak convergence of probabilities on the Skorokhod space on the dual of a nuclear space and applications, Studia Math., 254, 2, 109-147, 2020 · Zbl 1444.60008
[24] Fonseca-Mora, CA, Regularization of cylindrical processes in locally convex spaces, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 23, 4, 2050027, 2020 · Zbl 1457.60006
[25] Fuhrman, M.; Röckner, M., Generalized Mehler semigroups: the non-Gaussian case, Potential Anal., 12, 1, 1-47, 2000 · Zbl 0957.47028
[26] Hitsuda, M.; Mitoma, I., Tightness problem and stochastic evolution equation arising from fluctuation phenomena for interacting diffusions, J. Multivar. Anal., 19, 2, 311-328, 1986 · Zbl 0604.60059
[27] Itô, K., Foundations of Stochastic Equations in Infinite Dimensional Spaces, 1984, SIAM · Zbl 0547.60064
[28] Jakubowski, A., On the Skorokhod topology, Ann. l’I.H.P Probab. Stat., 22, 3, 263-285, 1986 · Zbl 0609.60005
[29] Jakubowski, A.; Riedle, M., Stochastic integration with respect to cylindrical Lévy processes, Ann. Probab., 45, 6, 4273-4306, 2017 · Zbl 1390.60192
[30] Jarchow, H., Locally Convex Spaces, 1981, Springer · Zbl 0466.46001
[31] Kallianpur, G.; Mitoma, I., A Segal-Langevin type stochastic differential equation on a space of generalized functionals, Can. J. Math., 44, 3, 524-552, 1992 · Zbl 0764.46040
[32] Kallianpur, G.; Pérez-Abreu, V., Stochastic evolution equations driven by nuclear-space-valued martingales, Appl. Math. Optim., 17, 125-172, 1988 · Zbl 0643.60049
[33] Kallianpur, G., Pérez-Abreu, V.: Weak convergence of solutions of stochastic evolution equations on nuclear spaces. In: Stochastic partial differential equations and applications II (Trento, 1988), Lecture Notes in Math., vol. 1390, pp. 119-131. Springer, Berlin (1989) · Zbl 0695.60064
[34] Kallianpur, G.; Wolpert, R., Infinite-dimensional stochastic differential equation models for spatially distributed neurons, Appl. Math. Optim., 12, 2, 125-172, 1984 · Zbl 0565.60055
[35] Kallianpur, G.; Xiong, J., Stochastic Differential Equations in Infinite Dimensional Spaces, 1995, Institute of Mathematical Statistics · Zbl 0845.60008
[36] Kōmura, T., Semigroups of operators in locally convex spaces, J. Funct. Anal., 2, 258-296, 1968 · Zbl 0172.40701
[37] Körezlioǧlu, H.; Martias, C.; Körezlioǧlu, H.; Mazziotto, G.; Szpirglas, J., Martingale representation and nonlinear filtering equation for distribution-valued processes, Filtering and Control of Random Processes, 111-137, 1984, Springer · Zbl 0532.93058
[38] Kosmala, T.; Riedle, M., Variational solutions of stochastic partial differential equations with cylindrical Lévy noise, Discrete Contin. Dyn. Syst. Ser. B, 26, 6, 2879-2898, 2021 · Zbl 1466.60129
[39] Kosmala, T.; Riedle, M., Stochastic integration with respect to cylindrical Lévy processes by \(p\)-summing operators, J. Theoret. Probab., 34, 1, 477-497, 2021 · Zbl 07306271
[40] Kumar, U.; Riedle, M., The stochastic Cauchy problem driven by a cylindrical Lévy process, Electron. J. Probab., 25, 10, 26, 2020 · Zbl 1445.60045
[41] Kurtz, TG; Protter, PE, Weak convergence of stochastic integrals and differential equations II: infinite dimensional case, Probabilistic models for nonlinear partial differential equations (Montecatini Terme, 1995), 197-285, 1996, Springer · Zbl 0862.60042
[42] Liu, Y.; Zhai, J., Time regularity of generalized Ornstein-Uhlenbeck processes with Lévy noises in Hilbert spaces, J. Theoret. Probab., 29, 3, 843-866, 2016 · Zbl 1390.60244
[43] Mandrekar, V.; Rüdiger, B., Stochastic integration in Banach spaces, Theory and applications, Probability Theory and Stochastic Modelling, 2015, Cham: Springer, Cham · Zbl 1314.60007
[44] Métivier, M.; Pellaumail, J., Stochastic integration, Probability and Mathematical Statistics, 1980, Academic Press · Zbl 0463.60004
[45] Mitoma, I., An \(\infty \)-dimensional inhomogeneous Langevin’s equation, J. Funct. Anal., 61, 3, 342-359, 1985 · Zbl 0579.60053
[46] Mitoma, I., Generalized Ornstein-Uhlenbeck process having a characteristic operator with polynomial coefficients, Probab. Theory Relat. Fields, 76, 4, 533-555, 1987 · Zbl 0617.60053
[47] Narici, L.; Beckenstein, E., Topological vector spaces, Pure and Applied Mathematics, 2011, CRC Press · Zbl 1219.46001
[48] Pavlyukevich, I.; Riedle, M., Non-standard Skorokhod convergence of Lévy-driven convolution integrals in Hilbert spaces, Stoch. Anal. Appl., 33, 2, 271-305, 2015 · Zbl 1314.60021
[49] Pérez-Abreu, V.; Tudor, C., Regularity and convergence of stochastic convolutions in duals of nuclear Fréchet spaces, J. Multivar. Anal., 43, 2, 185-199, 1992 · Zbl 0764.60056
[50] Pérez-Abreu, V.; Tudor, C., Large deviations for stochastic evolution equations in duals of nuclear Fréchet spaces, Stoch. Anal. Appl., 12, 2, 249-260, 1994 · Zbl 0802.60025
[51] Peszat, S.; Zabczyk, J., Stochastic partial differential equations with Lévy noise, Encyclopedia of Mathematics and Its Applications, 2007, Cambridge University Press · Zbl 1205.60122
[52] Pietsch, A., Nuclear locally convex spaces, Ergebnisse der Mathematikund ihrer Grenzgebiete, 1972, Springer · Zbl 0308.47024
[53] Riedle, M., Ornstein-Uhlenbeck processes driven by cylindrical Lévy processes, Potential Anal., 42, 4, 809-838, 2015 · Zbl 1332.60026
[54] Riedle, M.; van Gaans, O., Stochastic integration for Lévy processes with values in Banach spaces, Stoch. Process. Appl., 119, 6, 1952-1974, 2009 · Zbl 1179.60033
[55] Schaefer, H., Topological vector spaces, Graduate Texts in Mathematics, 1999, Springer · Zbl 0983.46002
[56] Trèves, F., Topological vector spaces, distributions and kernels, Pure and Applied Mathematics, 1967, Academic Press · Zbl 0171.10402
[57] Üstünel, AS, Some applications of stochastic integration in infinite dimensions, Stochastics, 7, 4, 255-288, 1982 · Zbl 0485.60056
[58] van Neerven, JMAM; Veraar, MC; Weis, L., Stochastic evolution equations in UMD Banach spaces, J. Funct. Anal., 255, 4, 940-993, 2008 · Zbl 1149.60039
[59] Zhu, J.; Brzeźniak, Z.; Liu, W., Maximal inequalities and exponential estimates for stochastic convolutions driven by Lévy-type processes in Banach spaces with application to stochastic quasi-geostrophic equations, SIAM J. Math. Anal., 51, 3, 2121-2167, 2019 · Zbl 1419.60052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.