×

Frame multiresolution analysis on \({\mathbb{Q}}_p\). (English) Zbl 1540.42058

Summary: Multiresolution analysis is a mathematical tool used to decompose functions in different resolution subspaces, where the scaling function plays a key role to construct the nested subspaces in \(L^2({\mathbb{R}})\). This paper presents a generalization of the same in \(L^2({\mathbb{Q}}_p)\), called frame multiresolution analysis (FMRA). So FMRA is a generalization of multiresolution analysis with frame condition. We study various properties of FMRA including characterizations in \(L^2({\mathbb{Q}}_p)\). Furthermore, frame scaling sets are studied with examples.

MSC:

42C15 General harmonic expansions, frames
11F85 \(p\)-adic theory, local fields
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
Full Text: DOI

References:

[1] Albeverio, S.; Evdokimov, S.; Skopina, M., \(p\)-Adic multiresolution analysis and wavelet frames, J. Fourier Anal. Appl., 16, 5, 693-714 (2010) · Zbl 1202.42059 · doi:10.1007/s00041-009-9118-5
[2] Bakić, D.; Krishtal, I.; Wilson, EN, Parseval frame wavelets with \(E^{(2)}_n\)-dilations, Appl. Comput. Harmon. Anal., 19, 3, 386-431 (2005) · Zbl 1090.42020 · doi:10.1016/j.acha.2004.12.006
[3] Benedetto, J.; Li, S., The theory of multiresolution analysis frames and applications to filter banks, Appl. Comput. Harmon. Anal., 5, 4, 389-427 (1998) · Zbl 0915.42029 · doi:10.1006/acha.1997.0237
[4] Christensen, O., An Introduction to Frames and Riesz Bases (2003), Boston: Birkhauser, Boston · Zbl 1017.42022 · doi:10.1007/978-0-8176-8224-8
[5] Dai, X.; Diao, Y.; Gu, Q.; Han, D., Wavelets with frame multiresolution analysis, J. Fourier Anal. Appl., 9, 1, 39-48 (2003) · Zbl 1030.42028 · doi:10.1007/s00041-003-0001-5
[6] Evdokimov, S.; Skopina, M., On orthogonal \(p\)-adic wavelet bases, J. Math. Anal. Appl., 424, 2, 952-965 (2015) · Zbl 1304.42087 · doi:10.1016/j.jmaa.2014.11.061
[7] Haldar, D.; Singh, D., \(p\)-Adic multiwavelet sets. \(p\)-Adic Num, Ultrametr. Anal. Appl., 11, 3, 192-204 (2019) · Zbl 1434.42049 · doi:10.1134/S2070046619030026
[8] Kozyrev, S., Wavelet theory as \(p\)-adic spectral analysis, Izvestiya Math., 66, 2, 367-376 (2002) · Zbl 1016.42025 · doi:10.1070/IM2002v066n02ABEH000381
[9] Kumar, R. Satyapriya: Construction of a frame multiresolution analysis on locally compact Abelian groups. Aust. J. Math. Anal. Appl. 18(1), 5 (2021) · Zbl 1474.42123
[10] Lian, QF; Li, YZ, Reducing subspace frame multiresolution analysis and frame wavelets, Commun. Pure Appl. Anal., 6, 3, 741-756 (2007) · Zbl 1141.42024 · doi:10.3934/cpaa.2007.6.741
[11] Meyer, Y.: Ondelletes et fonctions splines. Seminaire Equations aux Dérivées Partielles. Ecole Polytechnique, Paris, France (1986)
[12] Mallat, SG, Multiresolution approximations and wavelet orthonormal bases of \(L^2({\mathbb{R} })\), Tran. Am. Math. Soc., 315, 1, 69-87 (1989) · Zbl 0686.42018
[13] Ramakrishnan, D.; Valenza, RJ, Fourier Analysis on Number Fields (1999), Berlin: Springer-Verlag, Berlin · Zbl 0916.11058 · doi:10.1007/978-1-4757-3085-2
[14] Shah, F., Frame multiresolution analysis on local fields of positive characteristic, J. Oper., 2015, 216060 (2015) · Zbl 1373.42047
[15] Shah, F., \(p\)-Frame multiresolution analysis related to the Walsh functions, Int. J. Anal. Appl., 7, 1, 1-15 (2015) · Zbl 1379.42020
[16] Shah, FA; Lone, WZ; Mejjaoli, H., Nonuniform multiresolution analysis associated with linear canonical transform, J. Pseudo-Differ. Oper. Appl., 12, 21 (2021) · Zbl 1481.42046 · doi:10.1007/s11868-021-00398-8
[17] Shelkovich, VM; Skopina, M., \(p\)-Adic Haar multiresolution analysis and pseudo-differential operators, J. Fourier Anal. Appl., 15, 3, 366-393 (2009) · Zbl 1192.42024 · doi:10.1007/s00041-008-9050-0
[18] Vladimirov, VS; Volovich, IV; Zelenov, EI, \(p\)-Adic Analysis and Mathematical Physics (1994), Singapore: World Scientific, Singapore · Zbl 0812.46076 · doi:10.1142/1581
[19] Yadav, GCS; Kumar, A., Frame wavelet set and frequency frame wavelet in \(L^2({\mathbb{R} }^n)\), J. Pseudo-Differ. Oper. Appl., 14, 16 (2023) · Zbl 1516.42025 · doi:10.1007/s11868-023-00511-z
[20] Yu, X., Multiscaling frame multiresolution analysis and associated wavelet frames, Int. J. Wavelets Multiresolut. Inf. Process., 18, 3, 2050009 (2020) · Zbl 1446.42047 · doi:10.1142/S0219691320500095
[21] Yu, X., Semiorthogonal multiresolution analysis frames in higher dimensions, Acta Appl. Math., 111, 3, 257-286 (2010) · Zbl 1194.42041 · doi:10.1007/s10440-009-9544-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.