×

Conformists and contrarians on spheres. (English) Zbl 1539.37028

This paper investigates models of identical Kuramoto coupled oscillators on spheres. In the seminal paper [Physica D 74, 197–253 (1994; Zbl 0812.34043)] S. Watanabe and S. S. Strogatz used symmetries to reduce the dimensions of large ensembles of coupled oscillators. A model of this kind, described in [H. Hong and S. Strogatz, Phys. Rev. Lett. 106, No. 5, Article ID 054102, 4 p. (2011; doi:10.1103/PhysRevLett.106.054102)], examines the interactions between two sub-populations. The first sub-population – the conformists – consists of oscillators that are attracted to the mean field, and the second sub-population – the contrarians – are repulsed from the others. A distinctive feature is that pairwise interactions between oscillators from different sub-populations are not symmetric. In this paper, the authors reduce the conformists-contrarians model to a three-dimensional system of ordinary differential equations and find nontrivial equilibrium states and bifurcations.
The paper examines an extension of the conformists-contrarians model with identical oscillators to spheres. They take the dynamics of a large ensemble of generalized Kuramoto oscillators to a three-dimensional system. A bifurcation analysis shows that all phenomena from the classical model also appear in higher dimensions with different parameter values. In particular, they note that models on spheres show traveling waves consisting of contrarians.

MSC:

37C10 Dynamics induced by flows and semiflows
37C75 Stability theory for smooth dynamical systems
37G10 Bifurcations of singular points in dynamical systems
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C40 Ordinary differential equations and systems on manifolds
92D25 Population dynamics (general)

Citations:

Zbl 0812.34043
Full Text: DOI

References:

[1] Kuramoto, Y.; Araki, H., pp 420-2 (1975), Springer
[2] Watanabe, S.; Strogatz, S. H., Physica D, 74, 197-253 (1994) · Zbl 0812.34043 · doi:10.1016/0167-2789(94)90196-1
[3] Hong, H.; Strogatz, S. H., Phys. Rev. Lett., 106 (2011) · doi:10.1103/PhysRevLett.106.054102
[4] Hong, H.; Strogatz, S. H., Phys. Rev. E, 84 (2011) · doi:10.1103/PhysRevE.84.046202
[5] Chen, B.; Engelbrecht, J. R.; Mirollo, R., J. Phys. A: Math. Theor., 50 (2017) · Zbl 1377.35248 · doi:10.1088/1751-8121/aa7e39
[6] Abrams, D. M.; Mirollo, R.; Strogatz, S. H.; Wiley, D. A., Phys. Rev. Lett., 101 (2008) · doi:10.1103/PhysRevLett.101.084103
[7] Marvel, S. A.; Mirollo, R. E.; Strogatz, S. H., Chaos, 19 (2009) · Zbl 1311.34082 · doi:10.1063/1.3247089
[8] Pikovsky, A.; Rosenblum, M., Phys. Rev. Lett., 101 (2008) · doi:10.1103/PhysRevLett.101.264103
[9] McCullagh, P., Ann. Stat., 24, 787-808 (1996) · Zbl 0859.62007 · doi:10.1214/aos/1032894465
[10] Lohe, M. A., J. Phys. A: Math. Theor., 42 (2009) · Zbl 1187.37048 · doi:10.1088/1751-8113/42/39/395101
[11] Lohe, M. A., J. Math. Phys., 60 (2019) · Zbl 1422.34161 · doi:10.1063/1.5085248
[12] Jaćimović, V.; Crnkić, A., Netw. Heterog. Media, 15, 111-24 (2020) · Zbl 1441.34050 · doi:10.3934/nhm.2020005
[13] Markdahl, J.; Thunberg, J.; Goncalves, J., Automatica, 113 (2020) · Zbl 1440.93237 · doi:10.1016/j.automatica.2019.108736
[14] Ha, S-Y; Park, H., J. Stat. Phys., 178, 1268-92 (2020) · Zbl 1437.82013 · doi:10.1007/s10955-020-02505-3
[15] Lee, S.; Krischer, K., J. Phys. A: Math. Theor., 56 (2023) · Zbl 1527.34064 · doi:10.1088/1751-8121/acf4d6
[16] Stoll, M., Harmonic and Subharmonic Function Theory on the Hyperbolic Ball (2016), Cambridge University Press · Zbl 1372.31001
[17] Lipton, M.; Mirollo, R.; Strogatz, S. H., Chaos, 31 (2021) · Zbl 07866706 · doi:10.1063/5.0060233
[18] Crnkić, A.; Jaćimović, V.; Marković, M., Anal. Math. Phys., 11, 129 (2021) · Zbl 1479.34089 · doi:10.1007/s13324-021-00567-4
[19] Chandra, S.; Girvan, M.; Ott, E., Chaos, 29 (2019) · Zbl 1415.34085 · doi:10.1063/1.5093038
[20] Engelbrecht, J. R.; Mirollo, R., Phys. Rev. Res., 2 (2020) · doi:10.1103/PhysRevResearch.2.023057
[21] Jaćimović, V.; Crnkić, A., Int. J. Mod. Phys. B (2024)
[22] Javarone, M. A., Physica A, 414, 19-30 (2014) · doi:10.1016/j.physa.2014.07.018
[23] Gambaro, J. P.; Crokidakis, N., Physica A, 486, 465-72 (2017) · Zbl 1499.91072 · doi:10.1016/j.physa.2017.05.040
[24] Caponigro, M.; Lai, A. C.; Piccoli, B., Discrete Contin. Dyn. Syst. A, 35, 4241-68 (2015) · Zbl 1333.91047 · doi:10.3934/dcds.2015.35.4241
[25] Crnkić, A.; Jaćimović, V., Syst. Control Lett., 122, 32-38 (2018) · Zbl 1408.93008 · doi:10.1016/j.sysconle.2018.10.004
[26] Mi, L.; Gonçalves, J.; Markdahl, J., IEEE Trans. Autom. Control, 1-8 (2023) · Zbl 07884290 · doi:10.1109/TAC.2023.3281980
[27] Bialecki, S.; Kazmierczak, B.; Tsai, J-C, SIAM J. Appl. Math., 75, 1761-88 (2015) · Zbl 1336.34033 · doi:10.1137/140999384
[28] Visser, S.; Nicks, R.; Faugeras, O.; Coombes, S., Physica D, 349, 27-45 (2017) · Zbl 1376.92014 · doi:10.1016/j.physd.2017.02.017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.