×

Global boundedness and asymptotic behavior of solutions to a three-dimensional immune chemotaxis system. (English) Zbl 1537.35064

Summary: In a bounded smooth domain \(\Omega \subset \mathbb{R}^3\) and with a positive parameter \(\chi >0\), this paper is devoted to investigating the global boundedness and asymptotic behavior of solutions to a immune chemotaxis system. By establishing the uniform boundedness of \(L^{\infty}\)-norm for immune cells and the uniform boundedness of \(L^q\)-norm with \(q\in (3,\infty)\) for the chemokines gradient, it is possible to identify a smallness condition on chemosensitivity \(\chi\) that ensures global existence of classical solution to the model in a three-dimensional bounded domain. Moreover, to get exponential decay rate the smallness of \((\Vert M_0 \Vert_{L^{\infty}}, \Vert A_0 \Vert_{L^{\infty}})\) is pivotal, we shall see that the system still admits an energy type inequality, and an analysis thereof will show that any nontrivial solution approaches exponentially fast with respect to the topology in \(L^{\infty} (\Omega)\).

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Akbari, O.; Freeman, GJ; Meyer, EH; Greenfield, EA; Chang, TT; Sharpe, AH; Berry, G.; Dekruyff, RH; Umetsu, DT, Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity, Nat. Med., 8, 9, 1024-1032, 2002
[2] Bai, XL; Winkler, M., Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65, 553-583, 2016 · Zbl 1345.35117
[3] Bellomo, N.; Bellouquid, A.; Tao, YS; Winkler, M., Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25, 9, 1663-1763, 2015 · Zbl 1326.35397
[4] Bellomo, N.; Painter, KJ; Tao, YS; Winkler, M., Occurrence versus absence of taxis-driven instabilities in a May-Nowak model for virus infection, SIAM J. Appl. Math, 79, 5, 1990-2010, 2019 · Zbl 1428.35615
[5] Bellomo, N.; Tao, YS, Stabilization in a chemotaxis model for virus infection, Discrete Contin. Dyn. Syst. Ser. S., 13, 105-117, 2020 · Zbl 1439.35052
[6] Bonhoeffer, S.; May, RM; Shaw, GM, Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. USA, 94, 13, 6971-6976, 1997
[7] Cao, X., Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst. Ser. A, 35, 1891-1904, 2015 · Zbl 1515.35047
[8] Cohen, LE; Felson, M., Social change and crime rate trends: a routine activity approach, Am. Sociol. Rev., 44, 4, 588-608, 1979
[9] Devreotes, P.; Janetopoulos, C., Eukaryotic chemotaxis: distinctions between directional sensing and polarization, J. Biol. Chem., 278, 23, 20445-20448, 2003
[10] Eftimie, R.; Gillard, JJ; Cantrell, DA, Mathematical models for immunology: current state of the art and future research directions, Bull. Math. Biol., 78, 10, 2091-2134, 2016 · Zbl 1361.92033
[11] Felson, M., Routine activities and crime prevention in the developing metropolis, Criminology, 25, 911-932, 1987
[12] Fishman, MA; Perelson, AS, Modeling T cell-antigen presenting cell interactions, J. Theor. Biol., 160, 3, 311-342, 1993
[13] Freitag, M., Global solutions to a higher-dimensional system related to crime modeling, Math. Meth. Appl. Sci., 41, 1, 6326-6335, 2018 · Zbl 1401.35203
[14] Fuest, M., Boundedness enforced by mildly saturated conversion in a chemotaxis-May-Nowak model for virus infection, J. Math. Anal. Appl., 472, 1729-1740, 2019 · Zbl 1412.35340
[15] Fujita, H.; Kato, T., On the Navier-Stokes initial-value problem I, Arch. Ration. Mech. Anal., 16, 269-315, 1964 · Zbl 0126.42301
[16] Gajewski, H.; Zachariasand, K.; Gröger, K., Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195, 77-114, 1998 · Zbl 0918.35064
[17] Gereda, JE; Leung, DYM; Thatayatikom, A.; Streib, JE; Price, MR; Klinnert, MD; Liu, AH, Relation between house-dust endotoxin exposure, type 1 T-cell development, and allergen sensitisation in infants at high risk of asthma, Lancet., 355, 9216, 1680-1683, 2000
[18] Gro, F.; Metzner, G.; Behn, U., Mathematical modelling of allergy and specific immunotherapy: Th1-Th2-Treg interactions, J. Theor. Biol., 269, 1, 70-78, 2011 · Zbl 1307.92117
[19] Harris, TH; Banigan, EJ; Christian, DA; Konradt, C.; Wojno, EDT; Norose, K.; Wilson, EH; John, B.; Weninger, W.; Luster, AD; Liu, AJ; Hunter, CA, Generalized lévy walks and the role of chemokines in migration of effector CD \(8^+\) T cells, Nature., 486, 7404, 545-548, 2012
[20] Herrero, MA; Velázquez, JJL, A blow-up mechanism for a chemotaxis model, Ann. Sc.Norm. Super. Pisa, Cl. Sci., 24, 663-683, 1997 · Zbl 0904.35037
[21] Hu, B.; Lankeit, J., Boundedness of solutions to a virus infection model with saturated chemotaxis, J. Math. Anal. Appl., 468, 344-358, 2018 · Zbl 1396.92006
[22] Hu, B.; Tao, YS, Critical mass of lymphocytes for the coexistence in a chemotaxis system modeling tumor-immune cell interactions, Z. Angew. Math. Phys., 71, 1-15, 2020 · Zbl 1464.35364
[23] Keller, EF; Segel, LA, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26, 3, 399-415, 1970 · Zbl 1170.92306
[24] Kelling, G.L., Wilso, J.Q.: Broken windows. (1982)
[25] Komarova, NL, Viral reproductive strategies: how can lytic viruses be evolutionarily competitive?, J. Math. Biol., 249, 4, 766-784, 2007 · Zbl 1453.92218
[26] Korobeinikov, A., Global properties of basic virus dynamics models, Bull. Math. Biol., 66, 879-883, 2004 · Zbl 1334.92409
[27] Lee, S.; Kim, SW; Oh, Y.; Hwang, HJ, Mathematical modeling and its analysis for instability of the immune system induced by chemotaxis, J. Math. Biol., 75, 5, 1101-1131, 2017 · Zbl 1378.35314
[28] Lieberman, GM, Second Order Parabolic Differential Equations, 1996, River Edge: World Scientific, River Edge · Zbl 0884.35001
[29] Lin, F.; Butcher, EC, T cell chemotaxis in a simple microfluidic device, Lab Chip., 6, 11, 1462-1469, 2006
[30] Markowitz, M.; Leonard, JM; Perelson, AS; Neumann, AU; Ho, DD, HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science., 271, 1582-1586, 1996
[31] Manásevich, R.; Phan, QH; Souplet, P., Global existence of solutions for a chemotaxis-type system arising in crime modelling, Eur. J. Appl. Math., 24, 1, 273-296, 2013 · Zbl 1284.35445
[32] Nagai, T., Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5, 581-601, 1995 · Zbl 0843.92007
[33] Nowak, MA, Evolutionary Dynamics: Exploring the Equations of Life, 2006, Cambridge: Harvard University Press, Cambridge · Zbl 1115.92047
[34] Nowak, MA; Bangham, CRM, Population dynamics of immune responses to persistent viruses, Science, 272, 74-79, 1996
[35] Nowak, MA; May, R., Virus Dynamics: Mathematical Principles of Immunology and Virology, 2000, Oxford: Oxford University Press, Oxford · Zbl 1101.92028
[36] Osaki, K.; Yagi, A., Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkc. Ekvacioj Ser., I, 44, 441-470, 2001 · Zbl 1145.37337
[37] Pigozzo, AB; Macedo, GC; Santos, RWD; Lobosco, M., On the computational modeling of the innate immune system, BMC Bioinf., 14, 6, S7, 2013
[38] Porzio, MM; Vespri, V., Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Equ., 103, 146-178, 1993 · Zbl 0796.35089
[39] Quittner, P.; Souplet, Ph, Superlinear Parabolic Problems. Blow-up Global Existence and Steady States, 2007, Basel: Birkhäuser-Verlag, Basel · Zbl 1128.35003
[40] Rodriguez, N., On the global well-posedness theory for a class of PDE models for criminal activity, Phys. D Nonlinear Phenom., 260, 191-200, 2013 · Zbl 1286.91110
[41] Rodriguez, N.; Bertozzi, A., Local existence and uniqueness of solutions to a PDE model for criminal behavior, Math. Model. Meth. Appl. Sci., 20, 1, 1425-1457, 2010 · Zbl 1200.35308
[42] Rodriguez, N.; Winkler, M., On the global existence and qualitative behavior of one-dimensional solutions to a model for urban crime, European J. Appl. Math., 33, 5, 919-959, 2022 · Zbl 1503.35234
[43] Shan, WH; Zheng, P., Global boundedness of the immune chemotaxis system with general kinetic functions, Nonlinear Differ. Equ. Appl., 30, 29, 1-24, 2023 · Zbl 1509.35082
[44] Stancevic, O.; Angstmann, C.; Murray, JM; Henry, BI, Turing patterns from dynamics of early HIV infection, Bull. Math. Biol., 75, 774-795, 2013 · Zbl 1273.92035
[45] Short, MB; D’Orsogna, MR; Pasour, VB; Tita, GE; Brantingham, PJ; Bertozzi, AL; Chayes, LB, A statistical model of criminal behavior, Math. Models Methods Appl. Sci., 18, 1249-1263, 2008 · Zbl 1180.35530
[46] Short, MB; D’Orsogna, MR; Brantingham, PJ; Tita, GE, Measuring and modeling repeat and nea-repeat burglary effects, J. Quant. Criminol., 25, 3, 325-3391, 2009
[47] Stancevic, O.; Angstmann, CN; Murray, JM; Henry, BI, Turing patterns from dynamics of early HIV infection, Bull. Math. Biol., 75, 774-795, 2013 · Zbl 1273.92035
[48] Su, B.; Zhou, W.; Dorman, KS; Jones, DE, Mathematical modelling of immune response in tissues, Comput. Math. Methods Med., 10, 9-38, 2009 · Zbl 1317.92044
[49] Tao, YS; Winkler, M., Global smooth solutions in a two-dimensional cross-diffusion system modeling propagation of urban crime, Commun. Math. Sci, 19, 3, 829-849, 2022 · Zbl 1479.35120
[50] Wang, Q.; Wang, D.; Feng, Y., Global well-posedness and uniform boundedness of urban crime models: one-dimensional case, J. Diff. Eqs., 269, 1, 6216-6235, 2020 · Zbl 1440.35329
[51] Wang, W.; Ma, W.; Lai, X., Repulsion effect on superinfecting virions by infected cells for virus infection dynamic model with absorption effect and chemotaxis, Nonlinear Anal. Real World Appl., 33, 253-283, 2017 · Zbl 1352.92094
[52] Wei, XP; Ghosh, SK; Taylor, ME; Johnson, VA; Emini, EA; Deutsch, P.; Lifson, JD; Bonhoeffer, S.; Nowak, MA; Hahn, BH, Viral dynamics in human immunodeficiency virus type 1 infection, Nature, 373, 6510, 117-122, 1995
[53] Winkler, M., Aggregation versus global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248, 12, 2889-2905, 2010 · Zbl 1190.92004
[54] Winkler, M., Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100, 748-767, 2013 · Zbl 1326.35053
[55] Winkler, M., Boundedness in a chemotaxis-May-Nowak model for virus dynamics with mildly saturated chemotactic sensitivity, Acta Appl. Math., 163, 1-17, 2019 · Zbl 1423.35172
[56] Winkler, M., Global solvability and stabilization in a two-dimensional cross-diffusion system modeling urban crime propagation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36, 1, 1747-1790, 2019 · Zbl 1428.35611
[57] Xu, P.; Wang, LC; Hu, XG, Boundedness and stabilization of solutions to a chemotaxis May-Nowak model, Z. Angew. Math. Phys., 72, 2, 1-16, 2021 · Zbl 1466.35044
[58] Yoon, C.; Kim, S.; Hwang, HJ, Global well-posedness and pattern formations of the immune system induced by chemotaxis, Math. Biosci. Eng., 17, 4, 3426-3449, 2020 · Zbl 1467.92045
[59] Zhelev, DV; Alteraifi, AM; Chodniewicz, D., Controlled pseudopod extension of human neutrophils stimulated with different chemoattractants, Biophys. J., 87, 1, 688-695, 2004
[60] Zheng, P.; Mu, CL; Hu, XG, Persistence property in a two-species chemotaxis system with two signals, J. Math. Phys., 58, 11, 2017 · Zbl 1383.92021
[61] Zheng, P.; Mu, CL; Mi, YS, Global stability in a two-competing-species chemotaxis system with two chemicals, Differ. Integral Equ., 31, 7-8, 547-558, 2018 · Zbl 1463.35090
[62] Zheng, P.; Shan, WH, Global boundedness and stability analysis of the quasilinear immune chemotaxis system, J. Differ. Equ., 344, 556-607, 2023 · Zbl 1502.35028
[63] Zheng, P.; Xing, J., Boundedness and large-time behavior for a two-dimensional quasilinear chemotaxis-growth system with indirect signal consumption, Z. Angew. Math. Phys., 71, 71-98, 2020 · Zbl 1441.35140
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.