×

Data-driven control of dynamic event-triggered systems with delays. (English) Zbl 1534.93183

Summary: This article studies data-driven control of unknown sampled-data linear systems with communication delays under an event-triggering transmission mechanism. While event-triggered control has received much attention in the existing literature, its design and implementation typically require detailed model knowledge. Due to the difficulties in finding accurate models and the abundance of data in many practical applications, we propose a novel data-driven event-triggered control scheme for unknown, delayed systems with theoretical guarantees. To this end, as a first step, a model-based stability condition for the resulting event-triggered time-delay system is established using a novel looped-functional approach. Combining this model-based condition with the data-driven representation of linear systems, a data-based stability condition is derived. Further, methods for co-designing the controller gain and the event-triggering matrix are subsequently provided without using any prior knowledge of the system matrices. Finally, numerical examples are presented to corroborate the merits of the proposed data-driven event-triggered control schemes relative to existing results.
{© 2023 John Wiley & Sons, Ltd.}

MSC:

93C05 Linear systems in control theory
93C57 Sampled-data control/observation systems
93C65 Discrete event control/observation systems
93C43 Delay control/observation systems

Software:

SeDuMi

References:

[1] ChenT, FrancisBA. Optimal Sampled‐Data Control Systems. Springer‐Verlag; 1995. · Zbl 0847.93040
[2] ChenJ, SunJ, WangG. From unmanned systems to autonomous intelligent systems. Engineering. 2022;12(5):16‐19.
[3] WangX, SunJ, DouL. Improved results on stability analysis of sampled‐data systems. Int J Robust Nonliner Control. 2021;31(14):6549‐6561. · Zbl 1527.93331
[4] ParkJ, ParkP. An extended looped‐functional for stability analysis of sampled‐data systems. Int J Robust Nonliner Control. 2020;30(18):7962‐7969. · Zbl 1525.93305
[5] HetelL, FiterC, OmranH, et al. Recent developments on the stability of systems with aperiodic sampling: an overview. Automatica. 2017;76:309‐335. · Zbl 1352.93073
[6] FujiokaH. Stability analysis of systems with aperiodic sample‐and‐hold devices. Automatica. 2009;45(3):771‐775. · Zbl 1168.93373
[7] NaghshtabriziP, HespanhaJP, TeelAR. Exponential stability of impulsive systems with application to uncertain sampled‐data systems. Syst Control Lett. 2008;57(5):378‐385. · Zbl 1140.93036
[8] MirkinL. Some remarks on the use of time‐varying delay to model sample‐and‐hold circuits. IEEE Trans Autom Control. 2007;52(6):1109‐1112. · Zbl 1366.94798
[9] FridmanE. A refined input delay approach to sampled‐data control. Automatica. 2010;46(2):421‐427. · Zbl 1205.93099
[10] SeuretA. A novel stability analysis of linear systems under asynchronous samplings. Automatica. 2012;48(4):177‐182. · Zbl 1244.93095
[11] ZengH‐B, TeoK, HeY. A new looped‐functional for stability analysis of sampled‐data systems. Automatica. 2017;82:325‐331. · Zbl 1372.93153
[12] LeeT, ParkJ. Stability analysis of sampled‐data systems via free‐matrix‐based time‐dependent discontinuous Lyapunov approach. IEEE Trans Automat Control. 2017;62(7):3653‐3657. · Zbl 1370.93236
[13] LeeS, ParkM, KwonO, CaoJ. Less conservative results for stability of sampled‐data systems with constant delay. J Frankl Inst. 2020;357(15):10960‐10976. · Zbl 1450.93044
[14] ZengH, ZhaiZ, HeY, TeoK, WangW. New insights on stability of sampled‐data systems with time‐delay. Appl Math Comput. 2020;374:125041. · Zbl 1433.93110
[15] LjungL. System Identification: Theory for the User. Prentice‐Hall, Inc; 1986.
[16] MatniN, ProutiereA, RantzerA, TuS. From self‐tuning regulators to reinforcement learning and back again. Proceeding of the Conference on Decision and Control. Institute of Electrical and Electronics Engineers (IEEE); 2019:3724‐3740.
[17] OymakS, OzayN. Non‐asymptotic identification of LTI systems from a single trajectory. Proceeding of the American Control Conference. 2019:5655‐5661.
[18] MilaneseM, VicinoA. Optimal estimation theory for dynamic systems with set membership uncertainty. Overview Automat. Institute of Electrical and Electronics Engineers (IEEE); 1991;27(6):997‐1009. · Zbl 0737.62088
[19] HouZ, WangZ. From model‐based control to data‐driven control: survey, classification and perspective. IEEE Trans Ind Inform. 2013;235:3‐35. · Zbl 1284.93010
[20] WillemsJC, RapisardaP, MarkovskyI, De MoorBL. A note on persistency of excitation. Syst Control Lett. 2005;54(4):325‐329. · Zbl 1129.93362
[21] De PersisC, TesiP. Formulas for data‐driven control: stabilization, optimality, and robustness. IEEE Trans Autom Control. 2020;65(3):909‐924. · Zbl 1533.93591
[22] vanWaardeHJ, EisingJ, TrentelmanHL, CamlibelMK. Data informativity: a new perspective on data‐driven analysis and control. IEEE Trans Autom Control. 2020;65(11):4753‐4768. · Zbl 1536.93167
[23] vanWaardeHJ, CamlibelMK, MesbahiM. From noisy data to feedback controllers: non‐conservative design via a matrix S‐lemma. IEEE Trans Autom Control. 2022;67(1):162‐175. · Zbl 1536.93272
[24] BerberichJ, KochA, SchererCW, AllgöwerF. Robust data‐driven state‐feedback design. Proceeding of the American Control Conference. Institute of Electrical and Electronics Engineers (IEEE); 2020:1532‐1538.
[25] CoulsonJ, LygerosJ, DorflerF. Data‐enabled predictive control: In the shallows of the DeePC. Proceeding of the European Control Conference. Institute of Electrical and Electronics Engineers (IEEE); 2019:307‐312.
[26] BerberichJ, KöhlerJ, MüllerMA, AllgöwerF. Data‐driven model predictive control with stability and robustness guarantees. IEEE Trans Autom Control. 2021;66(4):1702‐1717. · Zbl 1536.93207
[27] LiuW, SunJ, WangG, BulloF, ChenJ. Data‐driven resilient predictive control under denial‐of‐service. IEEE Trans Autom Control. 2023;1‐16. doi:10.1109/TAC.2022.3209399.
[28] LiuW, SunJ, WangG, BulloF, ChenJ. Data‐driven self‐triggered control via trajectory prediction. IEEE Trans Autom Control. 2023;1‐8. doi:10.1109/TAC.2023.3244116.
[29] MarkovskyI, DörflerF. Behavioral systems theory in data‐driven analysis, signal processing, and control. Annu Rev Control. 2021;52:42‐64.
[30] Rueda‐EscobedoJG, FridmanE, SchifferJ. Data‐driven control for linear discrete‐time delay systems. IEEE Trans Autom Control. 2021;67:3321‐3336. doi:10.1109/TAC.2021.3096896 · Zbl 1537.93459
[31] WildhagenS, BerberichJ, HertneckM, AllgöwerF. Data‐driven estimation of the maximum sampling interval: analysis and controller design for discrete‐time systems. IEEE Trans Autom Control. 2021;1‐16. doi:10.1109/TAC.2022.3183969
[32] WildhagenS, BerberichJ, HircheM, AllgöwerF. Improved stability conditions for systems under aperiodic sampling: model‐ and data‐based analysis. Proceeding of the 60th IEEE Conference on Decision and Control (CDC). Institute of Electrical and Electronics Engineers (IEEE); 2021:5795‐5801.
[33] BerberichJ, WildhagenS, HertneckM, AllgöwerF. Data‐driven analysis and control of continuous‐time systems under aperiodic sampling. IFAC‐PapersOnLine. 2021;54(7):210‐215.
[34] TabuadaP. Event‐triggered real‐time scheduling of stabilizing control tasks. IEEE Trans Autom Control. 2007;52(9):1680‐1685. · Zbl 1366.90104
[35] LiY, WangX, SunJ, WangG, ChenJ. Data‐driven consensus control of fully distributed event‐triggered multi‐agent systems. SCIENCE CHINA Inf Sci. 2022;66(5):152202. doi:10.1007/s11432‐022‐3629‐1
[36] WangX, SunJ, WangG, AllgöwerF, Chen, J. Data‐driven control of distributed event‐triggered network systems. IEEE/CAA J Autom Sinica. 2023;10(2):351‐364. doi:10.1109/jas.2023.123225.
[37] YueD, TianE, HanQ. A delay system method for designing event‐triggered controllers of networked control systems. IEEE Trans Autom Control. 2013;58(2):475‐481. · Zbl 1369.93183
[38] GirardA. Dynamic triggering mechanisms for event‐triggered control. IEEE Trans Autom Control. 2015;60(7):1992‐1997. · Zbl 1360.93423
[39] LiuD, YangG. Dynamic event‐triggered control for linear time‐invariant systems with L2‐gain performance. Int J Robust Nonlin Control. 2019;29(2):507‐518. · Zbl 1411.93116
[40] ZengX, HuiQ. Energy‐event‐triggered hybrid supervisory control for cyber‐physical network systems. IEEE Trans Autom Control. 2015;60(11):3083‐3088. · Zbl 1360.93514
[41] ZhangX, HanQ. Event‐based
[( {H}_{\infty } \]\) filtering for sampled‐data systems. Automatica. 2015;51:55‐69. · Zbl 1309.93096
[42] GarnierH, MenslerM, RichardA. Continuous‐time model identification from sampled data: implementation issues and performance evaluation. Int J Control. 2003;76(13):1337‐1357. · Zbl 1050.93014
[43] WangX, BerberichJ, SunJ, WangG, AllgöwerF, Chen, J. Model‐based and data‐driven control of event‐ and self‐triggered discrete‐time linear systems. IEEE Trans Cybern. 2023;1‐15. In press.
[44] BerberichJ, SchererCW, AllgöwerF. Combining prior knowledge and data for robust controller design. IEEE Trans Autom Control. 2022;1‐16. doi:10.1109/TAC.2022.3209342.
[45] SunJ, LiuG, ChenJ, ReesD. Improved delay‐range‐dependent stability criteria for linear systems with time‐varying delays. Automatica. 2010;46(2):466‐470. · Zbl 1205.93139
[46] ZengH, HeY, WuM, SheJ. New results on stability analysis for systems with discrete distributed delay. Automatica. 2015;60:189‐192. · Zbl 1331.93166
[47] SchererCW, WeilandS. Linear Matrix Inequalities in Control. 3rd ed.; Springer‐Verlag; 2000.
[48] SchererCW. LPV control and full block multipliers. Automatica. 2001;37(3):361‐375. · Zbl 0982.93060
[49] ZhangW, BranickyM, PhillipsS. Stability of networked control systems. IEEE Control Syst Mag. 2001;21(1):84‐99.
[50] HeemelsW, SandeeJ, Van Den BoschP. Analysis of event‐driven controllers for linear systems. Int J Control. 2008;81(4):571‐590. · Zbl 1152.93423
[51] SturmJF. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Method Software. 1999;11(1):625‐653. · Zbl 0973.90526
[52] SelivanovA, FridmanE. Event‐triggered
[( {H}_{\infty } \]\) control: a switching approach. IEEE Trans Autom Control. 2016;61(10):3221‐3226.
[53] WangX, SunJ, WangG, DouL. A mixed switching event‐triggered transmission scheme for networked control systems. IEEE Trans Control Network Syst. 2022;9(1):390‐402. doi:10.1109/TCNS.2021.3106447
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.