×

Dynamics of melting heat transfer in thermally developed and chemically reactive flow of Eyring-Powell liquid through a curved channel. (English) Zbl 1533.76123

Summary: The present article concentrates on the consequences of melting heat transfer on the chemically reactive flow of Eyring-Powell liquid flow via a semi-permeable curved channel in presence of applied magnetic field. The impacts of two types of chemical reaction namely, homogeneous and heterogeneous are considered in the concentration equation. In addition, the characteristics of heat transport phenomena is also examined with the application of thermal radiation. By adopting a scheme of curvilinear coordinates system along with some appropriate similarity conversions a nonlinear ordinary differential equations is attained. The numerical simulation of the determined velocity and transport equations are estimated by using the shooting procedure. The influence of pertinent factors on the flow equations, surface drag force and rate of heat transport are thoroughly discussed via graphs and table. It is noted from the current study that surface drag force and concentration of the liquid are rises with a rising value of the melting parameter, while fluid velocity and its temperature decreases.

MSC:

76V05 Reaction effects in flows
76A05 Non-Newtonian fluids
76W05 Magnetohydrodynamics and electrohydrodynamics
76M20 Finite difference methods applied to problems in fluid mechanics
76M55 Dimensional analysis and similarity applied to problems in fluid mechanics
80A22 Stefan problems, phase changes, etc.
80A21 Radiative heat transfer
Full Text: DOI

References:

[1] Berman, AS, Laminar flow in channels with porous walls, J. Appl. Phys., 24, 9, 1232-1235 (1953) · Zbl 0050.41101 · doi:10.1063/1.1721476
[2] Raftari, B.; Parvaneh, F.; Vajravelu, K., Homotopy analysis of the magnetohydrodynamic flow and heat transfer of a second grade fluid in a porous channel, Energy, 59, 625-632 (2013) · doi:10.1016/j.energy.2013.07.054
[3] Ali, N.; Khan, SU; Sajid, M.; Abbas, Z., Flow and heat transfer of hydromagnetic Oldroyd-B fluid in a channel with stretching walls, Nonlinear Eng., 5, 2, 73-79 (2016)
[4] Riaz, A.; Sadiq, MA, Particle-fluid suspension of a non-Newtonian fluid through a curved passage: an application of urinary tract infections, Front. Phys., 8, 109 (2020) · doi:10.3389/fphy.2020.00109
[5] Abbas, Z.; Naveed, M.; Naeem, M.; Zia, QMZ, Analytical investigation of a Maxwell fluid flow with radiation in an axisymmetric semi-porous channel by parameterized perturbation method, J. Braz. Soc. Mech. Sci. Eng., 40, 2, 65 (2018) · doi:10.1007/s40430-018-0985-z
[6] Ahmed, R.; Ali, N.; Khan, SU; Rashad, AM; Nabwey, HA; Tlili, I., Novel microstructural features on heat and mass transfer in peristaltic flow through a curved channel, Front. Phys., 8, 178 (2020) · doi:10.3389/fphy.2020.00178
[7] Magesh, A., Kothandapani, M.: Heat and mass transfer analysis on non-Newtonian fluid motion driven by peristaltic pumping in an asymmetric curved channel. Eur. Phys. J. Special Topics (2021): 1-18.
[8] Khan, SU; Ali, N.; Sajid, M.; Hayat, T., Heat transfer characteristics in oscillatory hydromagnetic channel flow of Maxwell fluid using Cattaneo-Christov model, Proc. Natl. Acad. Sci., India, Sect. A, 89, 2, 377-385 (2019) · doi:10.1007/s40010-017-0470-6
[9] Aleem, M.; Asjad, MI; Ahmadian, A.; Salimi, M.; Ferrara, M., Heat transfer analysis of channel flow of MHD Jeffrey fluid subject to generalized boundary conditions, Eur. Phys. J. Plus, 135, 1, 1-15 (2020) · doi:10.1140/epjp/s13360-019-00071-6
[10] Khuri, SA, Stokes flow in curved channels, J. Comput. Appl. Math., 187, 2, 171-191 (2006) · Zbl 1080.76022 · doi:10.1016/j.cam.2005.03.042
[11] Abbas, Z.; Naveed, M.; Sajid, M., Nonlinear radiative heat transfer and Hall effects on a viscous fluid in a semi-porous curved channel, AIP Adv., 5, 10, 107124 (2015) · doi:10.1063/1.4934582
[12] M. Naveed, Z. Abbas, M. Sajid, Flow and heat transfer in a semi-porous curved channel with radiation and porosity effects. J Porous Media 19(5) (2016)
[13] Sajid, M.; Iqbal, SA; Naveed, M.; Abbas, Z., Joule heating and magnetohydrodynamic effects on ferrofluid (Fe3O4) flow in a semi-porous curved channel, J. Mol. Liq., 222, 1115-1120 (2016) · doi:10.1016/j.molliq.2016.08.001
[14] Javed, T.; Ali, N.; Abbas, Z.; Sajid, M., Flow of an Eyring-Powell non-Newtonian fluid over a stretching sheet, Chem. Eng. Commun., 200, 3, 327-336 (2013) · doi:10.1080/00986445.2012.703151
[15] Sajid, Q.; Hayat, T.; Shehzad, SA; Alsaedi, A., Nonlinear convective flow of Powell-Erying magneto nanofluid with Newtonian heating, Result. Phys., 7, 2933-2940 (2017) · doi:10.1016/j.rinp.2017.08.001
[16] Hina, S.; Mustafa, M.; Hayat, T.; Alsaedi, A., Peristaltic transport of Powell-Eyring fluid in a curved channel with heat/mass transfer and wall properties, Int. J. Heat Mass Transf., 101, 156-165 (2016) · doi:10.1016/j.ijheatmasstransfer.2016.05.034
[17] Farooq, S.; Hayat, T.; Ahmad, B.; Alsaedi, A., MHD flow of Eyring-Powell liquid in convectively curved configuration, J. Braz. Soc. Mech. Sci. Eng., 40, 3, 159 (2018) · doi:10.1007/s40430-018-1071-2
[18] Abbas, Z.; Rafiq, M.; Naveed, M., Analysis of Eyring-Powell liquid flow in curved channel with Cattaneo-Christov heat flux model, J. Braz. Soc. Mech. Sci. Eng., 40, 8, 390 (2018) · doi:10.1007/s40430-018-1312-4
[19] Ojjela, O.; Raju, A.; Naresh-Kumar, N., Influence of induced magnetic field and radiation on free convective Jeffery fluid flow between two parallel porous plates with Soret and Dufour effects, J. Mech., 35, 5, 657-675 (2019) · doi:10.1017/jmech.2018.68
[20] Abbas, Z.; Imran, M.; Naveed, M., Hydromagnetic flow of Carreau fluid in a curved channel with non-linear thermal radiation, Therm. Sci., 23, 6, 3379-3390 (2019) · doi:10.2298/TSCI171011077A
[21] Zaidi, HN; Yousif, M.; Nasreen, SN, Effects of thermal radiation, heat generation, and induced magnetic field on hydromagnetic free convection flow of couple stress fluid in an isoflux-isothermal vertical channel, J. Appl. Math., 2020, 1-12 (2020) · Zbl 1499.76105 · doi:10.1155/2020/4539531
[22] Poddar, S.; Minarul Islam, M.; Ferdouse, J.; Alam, MM, Characteristical analysis of MHD transfer dissipative and radiating fluid flow with magnetic field induction and suction, SN Appl. Sci., 3, 470 (2021) · doi:10.1007/s42452-021-04452-4
[23] Farooq, M.; Javed, M.; Khan, MI; Anjum, A.; Hayat, T., Melting heat transfer and double stratification in stagnation flow of viscous nanofluid, Result. Phys., 7, 2296-2301 (2017) · doi:10.1016/j.rinp.2017.06.053
[24] Hayat, T.; Farooq, M.; Alsaedi, A., Characteristics of homogeneous-heterogeneous reactions and melting heat transfer in the stagnation point flow of Jeffrey fluid, J. Appl. Fluid Mech., 9, 2, 809-816 (2016) · doi:10.18869/acadpub.jafm.68.225.24644
[25] Khan, WA; Khan, M.; Irfan, M.; Alshomrani, AS, Impact of melting heat transfer and nonlinear radiative heat flux mechanisms for the generalized Burgers fluids, Result. Phys., 7, 4025-4032 (2017) · doi:10.1016/j.rinp.2017.10.004
[26] Qayyum, S.; Khan, R.; Habib, H., Simultaneous effects of melting heat transfer and inclined magnetic field flow of tangent hyperbolic fluid over a nonlinear stretching surface with homogeneous-heterogeneous reactions, Int. J. Mech. Sci., 133, 1-10 (2017) · doi:10.1016/j.ijmecsci.2017.07.026
[27] Imtiaz, M.; Hayat, T.; Alsaedi, A., MHD convective flow of Jeffrey fluid due to a curved stretching surface with homogeneous-heterogeneous reactions, PLoS ONE, 11, 9, e0161641 (2016) · doi:10.1371/journal.pone.0161641
[28] Tanveer, A.; Hayat, T.; Alsaedi, A.; Ahmad, B., Mixed convective peristaltic flow of Sisko fluid in curved channel with homogeneous-heterogeneous reaction effects, J. Mol. Liq., 233, 131-138 (2017) · doi:10.1016/j.molliq.2017.03.001
[29] Sheikh, M.; Abbas, Z., Homogeneous-heterogeneous reactions in stagnation point flow of Casson fluid due to a stretching/shrinking sheet with uniform suction and slip effects, Ain Shams Eng. J., 8, 3, 467-474 (2017) · doi:10.1016/j.asej.2015.09.010
[30] Hayat, T.; Ayub, S.; Alsaedi, A., Homogeneous-heterogeneous reactions in curved channel with porous medium, Result. Phys., 9, 1455-1461 (2018) · doi:10.1016/j.rinp.2018.04.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.