×

Weakly stationary stochastic processes valued in a separable Hilbert space: Gramian-Cramér representations and applications. (English) Zbl 1533.60036

Summary: The spectral theory for weakly stationary processes valued in a separable Hilbert space has known renewed interest in the past decade. Here we follow earlier approaches which fully exploit the normal Hilbert module property of the time domain. The key point is to build the Gramian-Cramér representation as an isomorphic mapping from the modular spectral domain to the modular time domain. We also discuss the general Bochner theorem and provide useful results on the composition and inversion of lag-invariant linear filters. Finally, we derive the Cramér-Karhunen-Loève decomposition and harmonic functional principal component analysis, which are established without relying on additional assumptions.

MSC:

60G12 General second-order stochastic processes
47A56 Functions whose values are linear operators (operator- and matrix-valued functions, etc., including analytic and meromorphic ones)
46G10 Vector-valued measures and integration

Software:

freqdom.fda

References:

[1] C.D. Aliprantis and K.C. Border, Infinite Dimensional Analysis, 3rd ed. Springer, Berlin (2006). · Zbl 1156.46001
[2] S.K. Berberian, Notes on Spectral Theory. Van Nostrand Mathematical Studies, No. 5. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London (1966). · Zbl 0138.39104
[3] S.K. Berberian, Naimark’s moment theorem. Michigan Math. J. 13 (1966) 171-184. · Zbl 0152.13804 · doi:10.1307/mmj/1028999543
[4] J.K. Brooks, On the vitali-hahn-saks and nikodym theorems. Proc. Natl. Aca. Sci. U.S.A. 64 (1969) 468-471. · Zbl 0188.35604 · doi:10.1073/pnas.64.2.468
[5] V. Characiejus and A. Račkauskas, The central limit theorem for a sequence of random processes with space-varying long memory. Lithuanian Math. J. 53 (2013) 149-160. · Zbl 1273.60025 · doi:10.1007/s10986-013-9200-1
[6] V. Characiejus and A. Račkauskas, Operator self-similar processes and functional central limit theorems. Stochast. Processes a Appl. 124 (2014) 2605-2627. · Zbl 1308.60042 · doi:10.1016/j.spa.2014.03.007
[7] J.B. Conway, A Course in Functional Analysis, Vol. 96 of Graduate Texts in Mathematics, 2nd ed. Springer-Verlag, New York (1990). · Zbl 0706.46003
[8] J.B. Conway, A Course in Operator Theory, Vol. 21 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2000). · Zbl 0936.47001
[9] J. Diestel and J.J. Uhl, Jr., Vector Measures. American Mathematical Society, Providence, RI (1977). · Zbl 0369.46039 · doi:10.1090/surv/015
[10] N. Dinculeanu, Vector Measures. Pergamon Press, Oxford (1967).
[11] N. Dinculeanu, Vector Integration and Stochastic Integration in Banach Spaces, Vol. 48. John Wiley & Sons (2011).
[12] M.-C. Düker, Limit theorems for Hilbert space-valued linear processes under long range dependence. Stochast. Processes Appl. 128 (2018) 1439-1465. · Zbl 1396.60030 · doi:10.1016/j.spa.2017.07.015
[13] R.B. Holmes, Mathematical foundations of signal processing. SIAM Rev. 21 (1979) 361-388. · Zbl 0434.62072 · doi:10.1137/1021053
[14] S. Hörmann, L. Kidziński and M. Hallin, Dynamic functional principal components. J. R. Stat. Soc. Ser. B. Stat. Methodol. 77 (2015) 319-348. · Zbl 1414.62133 · doi:10.1111/rssb.12076
[15] Y. Kakihara, Multidimensional Second Order Stochastic Processes. World Scientific (1997). · Zbl 0894.60035 · doi:10.1142/3348
[16] G. Kallianpur and V.S. Mandrekar, Spectral theory of stationary H-valued processes. J. Multivariate Anal. 1 (1971) 1-16. · Zbl 0248.60028 · doi:10.1016/0047-259X(71)90026-1
[17] A.N. Kolmogoroff, Stationary sequences in Hilbert’s space. Bol. Moskovskogo Gosudarstvenogo Univ. Mat. 2 (1941) 40. · Zbl 0063.03291
[18] D. Li, P.M. Robinson and H.L. Shang, Long-range dependent curve time series. J. Am. Stat. Assoc. 115 (2020) 957-971. · Zbl 1445.62231 · doi:10.1080/01621459.2019.1604362
[19] V.S. Mandrekar and H. Salehi, The square-integrability of operator-valued functions with respect to a non-negative operator-valued measure and the Kolmogorov isomorphism theorem. Indiana Univ. Math. J. 20 (1970/1971) 545-563. · Zbl 0252.46040 · doi:10.1512/iumj.1971.20.20045
[20] P.R. Masani, Recent trends in multivariate prediction theory, in Multivariate Analysis (Proc. Internat. Sympos., Dayton, Ohio, 1965) (1966), 351-382. · Zbl 0216.46706
[21] V.M. Panaretos and S. Tavakoli, Fourier analysis of stationary time series in function space. Ann. Statist. 41 (2013) 568-603. · Zbl 1267.62094 · doi:10.1214/13-AOS1086
[22] V.M. Panaretos and S. Tavakoli, Cramer-Karhunen-Loeve representation and harmonic principal component analysis of functional time series. Stochast. Processes Appl. 123 (2013) 2779-2807. · Zbl 1285.62109 · doi:10.1016/j.spa.2013.03.015
[23] V. Pipiras and M.S. Taqqu, Long-Range Dependence and Self-Similarity. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press (2017). · Zbl 1377.60005
[24] A. Račkauskas and C. Suquet, Operator fractional Brownian motion as limit of polygonal lines processes in hilbert space. Stochast. Dyn. 11 (2011) 49-70. · Zbl 1228.60045 · doi:10.1142/S0219493711003152
[25] W. Rudin, Fourier Analysis on Groups. Wiley Classics Library. John Wiley & Sons, Inc., New York (1990). · Zbl 0698.43001 · doi:10.1002/9781118165621
[26] S. Tavakoli, Fourier Analysis of Functional Time Series, with Applications to DNA Dynamics. PhD thesis, MATHAA, EPFL (2014).
[27] A. van Delft and M. Eichler, Locally stationary functional time series. Electron. J. Statist. 12 (2018) 107-170. · Zbl 1473.62317 · doi:10.1214/17-EJS1384
[28] A. van Delft and M. Eichler, A note on Herglotz’s theorem for time series on function spaces. Stochast. Process. Appl. 130 (2020) 3687-3710. · Zbl 1462.60041 · doi:10.1016/j.spa.2019.10.006
[29] J. Weidmann, Linear Operators in Hilbert Spaces, Vol. 68 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin (1980). · Zbl 0434.47001 · doi:10.1007/978-1-4612-6027-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.