×

Finite embedding problems over noncommutative fields. (Problèmes de plongement finis sur les corps non commutatifs.) (French. English summary) Zbl 1533.16030

The main objective of this paper is to extend the notion of finite embedding problem over fields to the non-commutative setting of a division ring which is of finite dimension over its center. Classically, finite embedding problems over a field \(k\) are related to the inverse Galois problem over \(k\), namely, whether every finite group occurs as the Galois group of a Galois extension of \(k\).
One of the main contributions is to show that given a finite embedding problem \(\alpha:G\to \mathrm{Gal}(L/H)\), \(\alpha\) admits a solution if and only if the associated finite embedding problem \(\check{\alpha}:G\to\mathrm{Gal}(l/h)\) over \(h\) (where \(l\) is the center of \(L\)) has a solution which involves a polynomial constraint for the reduced norm of \(H/h\).
The second main result is a non-commutative analogue of a deep result of F. Pop [Ann. Math. (2) 144, No. 1, 1–34 (1996; Zbl 0862.12003)], namely, for a division ring \(H\) of finite dimension over its center \(h\) every finite split embedding problem over \(H\) admits a geometric solution provided \(h\) is a large field.

MSC:

16K40 Infinite-dimensional and general division rings
12F12 Inverse Galois theory

Citations:

Zbl 0862.12003
Full Text: DOI

References:

[1] Alon, G.; Legrand, F.; Paran, E., Galois groups over rational function fields over skew fields, Comptes Rendus Mathématique. Académie des Sciences. Paris, 358, 785-790 (2020) · Zbl 1477.12001 · doi:10.5802/crmath.20
[2] A. Behajaina, Théorie inverse de Galois sur les corps de fractions rationnelles tordus, Journal of Pure and Applied Algebra 225 (2021), Article no. 106549. · Zbl 1473.12002
[3] A. Blanchard, Les corps non commutatifs, Collection Sup: Le Mathématicien, Vol. 9, Presses Universitaires de France, Vendôme, 1972. · Zbl 0249.16001
[4] Bourbaki, N., Éléments de mathématique. Algèbre. Chapitre 8. Modules et anneaux semi-simples (2012), Berlin: Springer, Berlin · Zbl 1245.16001
[5] Bary-Soroker, L.; Fehm, A., Open problems in the theory of ample fields, Geometric and Differential Galois Theories, 1-11 (2013), Paris: Société Mathématique de France, Paris · Zbl 1387.12002
[6] Cohn, P. M., Skew Fields (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0840.16001 · doi:10.1017/CBO9781139087193
[7] Dèbes, P.; Deschamps, B., The regular inverse Galois problem over large fields, Geometric Galois Actions, 2, 119-138 (1997), Cambridge: Cambridge University Press, Cambridge · Zbl 0905.12004 · doi:10.1017/CBO9780511666124.007
[8] Dèbes, P., Méthodes topologiques et analytiques en théorie inverse de Galois: théorème d’existence de Riemann, Arithmétique de revêtements algébriques (Saint-Étienne, 2000), 27-41 (2001), Paris: Société Mathématique de France, Paris · Zbl 1037.12007
[9] Dèbes, P., Théorie de Galois et giéomiétrie: une introduction, Arithmétique de revêtements algébriques (Saint-Étienne, 2000), 1-26 (2001), Paris: Société Mathématique de France, Paris · Zbl 1037.12006
[10] B. Deschamps, Une introduction au groupe de Brauer, Lecture notes, 2012, Available at http://perso.univ-lemans.fr/ bdesch/BrauerCaen.pdf.
[11] Deschamps, B., Minimalité et abyssalité des extensions abéliennes et projectives de ℚ, Journal of Algebra, 441, 1-20 (2015) · Zbl 1418.11147 · doi:10.1016/j.jalgebra.2015.04.047
[12] B. Deschamps and F. Legrand, Fr Le problème inverse de Galois sur les corps des fractions tordus à indéterminée centrale, Journal of Pure and Applied Algebra 224 (2020), Article no. 106240. · Zbl 1480.12004
[13] Fried, M. D.; Jarden, M., Field Arithmetic (2008), Berlin: Springer, Berlin · Zbl 1145.12001
[14] Goodearl, K. R.; Warfield, R. B Jr., An Introduction to Noncommutative Noetherian Rings (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 1101.16001 · doi:10.1017/CBO9780511841699
[15] Haran, D.; Jarden, M., Regular split embeddings problems over function fields of one variable over ample fields, Journal of Algebra, 208, 147-164 (1998) · Zbl 0923.12005 · doi:10.1006/jabr.1998.7454
[16] Harbater, D.; Stevenson, K. F., Local Galois theory in dimension two, Advances in Mathematics, 198, 623-653 (2005) · Zbl 1104.12003 · doi:10.1016/j.aim.2005.06.011
[17] Jacobson, N., Structure of Rings (1964), Providence, RI: American Mathematical Society, Providence, RI
[18] Jarden, M., Algebraic Patching (2011), Heidelberg: Springer, Heidelberg · Zbl 1235.12002 · doi:10.1007/978-3-642-15128-6
[19] Lam, T. Y., Introduction to Quadratic Forms Over Fields (2005), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1068.11023
[20] Malle, G.; Matzat, B. H., Inverse Galois Theory (2018), Berlin: Springer, Berlin · Zbl 1406.12001 · doi:10.1007/978-3-662-55420-3
[21] Ore, O., Theory of non-commutative polynomials, Annals of Mathematics, 34, 480-508 (1933) · JFM 59.0925.01 · doi:10.2307/1968173
[22] Paran, E., Split embedding problems over complete domains, Annals of Mathematics, 170, 899-914 (2009) · Zbl 1247.12005 · doi:10.4007/annals.2009.170.899
[23] Pop, F., Embedding problems over large fields, Annals of Mathematics, 144, 1-34 (1996) · Zbl 0862.12003 · doi:10.2307/2118581
[24] Pop, F., Little survey on large fields—old & new, Valuation Theory in Interaction, 432-463 (2014), Zürich: European Mathematical Society, Zürich · Zbl 1341.12004 · doi:10.4171/149-1/21
[25] Serre, J-P, Topics in Galois Theory (1992), Boston, MA: Jones and Bartlett, Boston, MA · Zbl 0746.12001
[26] Vöolklein, H., Groups as Galois Groups. An introduction (1996), Cambridge: Cambridge University Press, Cambridge · Zbl 0868.12003 · doi:10.1017/CBO9780511471117
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.