×

On the local maxima behaviour of Hecke eigenvalues and its applications. (English) Zbl 1533.11080

Summary: Let \(H_k\) denote the space of primitive holomorphic cusp forms of even integral weight \(k\) for the full modular group \(\Gamma = \mathrm{SL} (2, \mathbb{Z})\). Denote by \(\lambda_{\mathrm{sym}^m f}(n)\) the \(n\)th normalized coefficient of the Dirichlet expansion of the \(m\)th symmetric power \(L\)-function associated to \(f\). In this paper, we establish the asymptotic formulas of sums of pairwise maxima concerning the normalized coefficients of symmetric power \(L\)-functions. We also establish similar results for the normalized coefficients of Rankin-Selberg \(L\)-functions \(L(\mathrm{sym}^i f \times \mathrm{sym}^j f,s)\) and \(L(\mathrm{sym}^i f \times \mathrm{sym}^j g,s)\) attached to \(f\) and \(g\), respecitvely. As applications, we also consider the proportion of the sign changes among the difference of normalized coefficients associated with symmetric power \(L\)-functions and Rankin-Selberg \(L\)-functions attached to \(f\) and \(g\), respectively.

MSC:

11F11 Holomorphic modular forms of integral weight
11F30 Fourier coefficients of automorphic forms
11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations
Full Text: DOI

References:

[1] Amri, MA, Simultaneous sign changes and equidistribution of signs of Fourier coefficients of two cusp forms, Arch Math., 111, 257-266 (2018) · Zbl 1442.11073 · doi:10.1007/s00013-018-1203-z
[2] Andrade, J.; Smith, K., On the pairwise maxima of generalized divisor functions, Quart. J Math., 69, 943-950 (2018) · Zbl 1446.11181 · doi:10.1093/qmath/hay008
[3] Barnet-Lamb, T.; Geraghty, D.; Harris, M.; Taylor, R., A family of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math Sci., 47, 29-98 (2011) · Zbl 1264.11044 · doi:10.2977/PRIMS/31
[4] Deligne, P., La Conjecture de Weil, I, Inst. Hautes Études Sci. Publ Math., 43, 273-307 (1974) · Zbl 0287.14001 · doi:10.1007/BF02684373
[5] Erdős, P.; Hall, RR, Values of the divisor function on short interval, J Number Theory, 12, 176-187 (1980) · Zbl 0435.10027 · doi:10.1016/0022-314X(80)90050-5
[6] Henriot, K., Nair-Tenenbaum bounds uniform with respect to the discriminant, Math. Proc. Camb. Philos Soc., 152, 405-424 (2012) · Zbl 1255.11048 · doi:10.1017/S0305004111000752
[7] Holowinsky, RH, Sieving for Mass equidistribution, Ann of Math., 172, 2, 1499-1516 (2010) · Zbl 1214.11054 · doi:10.4007/annals.2010.172.1499
[8] Hua, GD, Mean value estimates of pairwise maxima of Hecke eigenvalues, Adv. Math (China), 50, 1, 117-124 (2021) · Zbl 1474.11110
[9] Iwaniec, H., Topics in Classical Automorphic Forms (1997), Providence: Amer. Math. Soc., Providence · Zbl 0905.11023 · doi:10.1090/gsm/017
[10] Iwaniec, H.; Kowalski, E., Analytic Number Theory (2004), Providence: Amer. Math. Soc., Providence · Zbl 1059.11001
[11] Kátai, I., On the local behaviour of the function d(n), Mat Lapok., 18, 297-302 (1967) · Zbl 0167.31601
[12] Lü, GS, Shifted convolution sums of Fourier coefficients with divisor functions, Acta Math Hungar., 146, 1, 86-97 (2015) · Zbl 1363.11067 · doi:10.1007/s10474-015-0499-4
[13] Lü, GS, On pairwise maxima of powers of Hecke eigenvalues, Acta Arith., 192, 249-257 (2020) · Zbl 1468.11200 · doi:10.4064/aa180721-7-2
[14] Rankin, RA, Contributions to the theory of Ramanujan’s function τ(n) and similar arithmetical functions II, The order of the Fourier coefficients of the integral modular forms. Proc. Camb. Philos Soc., 35, 357-372 (1939) · Zbl 0021.39202
[15] Wirsing, E., Das asymptotische Verhalten von Summen über multiplikative Funktionen, Math Ann., 143, 75-102 (1961) · Zbl 0104.04201 · doi:10.1007/BF01351892
[16] Wirsing, E., Das asymptotische Verhalten von Summen über multiplikative Funktionen II, Acta Math. Acad. Sci Hungar, 18, 411-467 (1967) · Zbl 0165.05901 · doi:10.1007/BF02280301
[17] Wong, PJ, On the Chebotarev-Sato-Tate phenomenon, J Number Theory, 196, 272-290 (2019) · Zbl 1461.11123 · doi:10.1016/j.jnt.2018.09.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.