×

Metadynamics for transition paths in irreversible dynamics. (English) Zbl 1532.82010

Summary: Stochastic systems often exhibit multiple viable metastable states that are long-lived. Over very long timescales, fluctuations may push the system to transition between them, drastically changing its macroscopic configuration. In realistic systems, these transitions can happen via multiple physical mechanisms, corresponding to multiple distinct transition channels for a pair of states. In this paper, we use the fact that the transition path ensemble is equivalent to the invariant measure of a gradient flow in pathspace, which can be efficiently sampled via metadynamics. We demonstrate how this pathspace metadynamics, previously restricted to reversible molecular dynamics, is in fact very generally applicable to metastable stochastic systems, including irreversible and time-dependent ones, and allows rigorous estimation of the relative probability of competing transition paths. We showcase this approach on the study of a stochastic partial differential equation describing magnetic field reversal in the presence of advection.

MSC:

82M37 Computational molecular dynamics in statistical mechanics
65C05 Monte Carlo methods
82C35 Irreversible thermodynamics, including Onsager-Machlup theory
60F10 Large deviations

References:

[1] Allen, R. J., Valeriani, C., and Wolde, P. R. ten, Forward flux sampling for rare event simulations, J. Phys. Condens. Matter, 21 (2009), 463102, doi:10.1088/0953-8984/21/46/463102.
[2] Allen, R. J., Warren, P. B., and ten Wolde, P. R., Sampling rare switching events in biochemical networks, Phys. Rev. Lett., 94 (2005), 018104, doi:10.1103/PhysRevLett.94.018104.
[3] Alley, R. B., Marotzke, J., Nordhaus, W. D., Overpeck, J. T., Peteet, D. M., Pielke, R. A. Jr., Pierrehumbert, R. T., Rhines, P. B., Stocker, T. F., Talley, L. D., and Wallace, J. M., Abrupt climate change, Science, 299 (2003), pp. 2005-2010, doi:10.1126/science.1081056.
[4] Ashwin, P. and von der Heydt, A. S., Extreme sensitivity and climate tipping points, J. Stat. Phys., 179 (2020), pp. 1531-1552, doi:10.1007/s10955-019-02425-x. · Zbl 1446.37075
[5] Barducci, A., Bussi, G., and Parrinello, M., Well-tempered metadynamics: A smoothly converging and tunable free-energy method, Phys. Rev. Lett., 100 (2008), 020603, doi:10.1103/PhysRevLett.100.020603.
[6] Beskos, A., Roberts, G., Stuart, A., and Voss, J., MCMC methods for diffusion bridges, Stoch. Dyn., 08 (2008), pp. 319-350, doi:10.1142/S0219493708002378. · Zbl 1159.65007
[7] Bolhuis, P., Chandler, D., Dellago, C., and Geissler, P., Transition path sampling: Throwing ropes over rough mountain passes, in the dark, Annu. Rev. Phys. Chem., 53 (2002), pp. 291-318, doi:10.1146/annurev.physchem.53.082301.113146.
[8] Bolhuis, P. G. and Swenson, D. W. H., Transition path sampling as Markov chain Monte Carlo of trajectories: Recent algorithms, software, applications, and future outlook, Adv. Theory Simul., 4 (2021), 2000237, doi:10.1002/adts.202000237.
[9] Borrero, E. E. and Dellago, C., Avoiding traps in trajectory space: Metadynamics enhanced transition path sampling, European Phys. J. Spec. Topics, 225 (2016), pp. 1609-1620, doi:10.1140/epjst/e2016-60106-y.
[10] Bryngelson, J. D., Onuchic, J. N., Socci, N. D., and Wolynes, P. G., Funnels, pathways, and the energy landscape of protein folding: A synthesis, Proteins Structure Function Bioinformatics, 21 (1995), pp. 167-195, doi:10.1002/prot.340210302.
[11] Bussi, G. and Laio, A., Using metadynamics to explore complex free-energy landscapes, Nature Rev. Phys., 2 (2020), pp. 200-212, doi:10.1038/s42254-020-0153-0.
[12] Darve, E. and Pohorille, A., Calculating free energies using average force, J. Chem. Phys., 115 (2001), pp. 9169-9183, doi:10.1063/1.1410978.
[13] Darve, E., Wilson, M. A., and Pohorille, A., Calculating free energies using a scaled-force molecular dynamics algorithm, Mol. Simul., 28 (2002), pp. 113-144, doi:10.1080/08927020211975.
[14] Dawsont, D. A. and Gärtner, J., Large deviations from the McKean-Vlasov limit for weakly interacting diffusions, Stochastics, 20 (1987), pp. 247-308, doi:10.1080/17442508708833446. · Zbl 0613.60021
[15] Drummond, P. D., Forward, backward, and weighted stochastic bridges, Phys. Rev. E, 96 (2017), 042123, doi:10.1103/PhysRevE.96.042123.
[16] Dürr, D. and Bach, A., The Onsager-Machlup function as Lagrangian for the most probable path of a diffusion process, Comm. Math. Phys., 60 (1978), pp. 153-170, doi:10.1007/BF01609446. · Zbl 0377.60044
[17] E, W., Ren, W., and Vanden-Eijnden, E., String method for the study of rare events, Phys. Rev. B, 66 (2002), 052301, doi:10.1103/PhysRevB.66.052301.
[18] E, W., Ren, W., and Vanden-Eijnden, E., Energy landscape and thermally activated switching of submicron-sized ferromagnetic elements, J. Appl. Phys., 93 (2003), pp. 2275-2282.
[19] E, W., Ren, W., and Vanden-Eijnden, E., Minimum action method for the study of rare events, Comm. Pure Appl. Math., 57 (2004), pp. 637-656, doi:10.1002/cpa.20005. · Zbl 1050.60068
[20] Faccioli, P., Sega, M., Pederiva, F., and Orland, H., Dominant pathways in protein folding, Phys. Rev. Lett., 97 (2006), p. 108101, doi:10.1103/PhysRevLett.97.108101.
[21] Finkel, J., Webber, R. J., Gerber, E. P., Abbot, D. S., and Weare, J., Learning forecasts of rare stratospheric transitions from short simulations, Mon. Weather Rev., 149 (2021), pp. 3647-3669, doi:10.1175/MWR-D-21-0024.1.
[22] Freidlin, M. I. and Wentzell, A. D., Random Perturbations of Dynamical Systems, , Springer, 2012. · Zbl 1267.60004
[23] Gardner, T. S., Cantor, C. R., and Collins, J. J., Construction of a genetic toggle switch in Escherichia coli, Nature, 403 (2000), pp. 339-342.
[24] Gelfand, I. M. and Fomin, S. V., Calculus of Variations, Courier Corporation, 2000.
[25] Gladrow, J., Keyser, U. F., Adhikari, R., and Kappler, J., Experimental measurement of relative path probabilities and stochastic actions, Phys. Rev. X, 11 (2021), 031022, doi:10.1103/PhysRevX.11.031022.
[26] Gnesotto, F. S., Mura, F., Gladrow, J., and Broedersz, C. P., Broken detailed balance and non-equilibrium dynamics in living systems: A review, Rep. Prog. Phys., 81 (2018), 066601, doi:10.1088/1361-6633/aab3ed.
[27] Grafke, T., Grauer, R., and Schäfer, T., The instanton method and its numerical implementation in fluid mechanics, J. Phys. A, 48 (2015), 333001, doi:10.1088/1751-8113/48/33/333001. · Zbl 1327.76076
[28] Grafke, T., Grauer, R., Schäfer, T., and Vanden-Eijnden, E., Arclength parametrized Hamilton’s equations for the calculation of instantons, Multiscale Model. Simul., 12 (2014), pp. 566-580, doi:10.1137/130939158. · Zbl 1348.60084
[29] Grafke, T., Grauer, R., and Schindel, S., Efficient computation of instantons for multi-dimensional Turbulent flows with large scale forcing, Commun. Comput. Phys., 18 (2015), pp. 577-592, doi:10.4208/cicp.031214.200415a. · Zbl 1373.76059
[30] Grafke, T. and Vanden-Eijnden, E., Numerical computation of rare events via large deviation theory, Chaos, 29 (2019), 063118, doi:10.1063/1.5084025. · Zbl 1416.65042
[31] Hairer, M., Stuart, A. M., and Voss, J., Analysis of SPDEs arising in path sampling part \({\rm II}\): The nonlinear case, Ann. Appl. Probab., 17 (2007), pp. 1657-1706. · Zbl 1140.60329
[32] Helfmann, L., Ribera Borrell, E., Schütte, C., and Koltai, P., Extending transition path theory: Periodically driven and finite-time dynamics, J. Nonlinear Sci., 30 (2020), pp. 3321-3366, doi:10.1007/s00332-020-09652-7. · Zbl 1475.82013
[33] Hénin, J. and Chipot, C., Overcoming free energy barriers using unconstrained molecular dynamics simulations, J. Chem. Phys., 121 (2004), pp. 2904-2914, doi:10.1063/1.1773132.
[34] Henkelman, G. and Jónsson, H., Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys., 113 (2000), pp. 9978-9985.
[35] Heymann, M. and Vanden-Eijnden, E., The geometric minimum action method: A least action principle on the space of curves, Comm. Pure Appl. Math., 61 (2008), pp. 1052-1117, doi:10.1002/cpa.20238. · Zbl 1146.60046
[36] Hochberg, D., Molina-París, C., Pérez-Mercader, J., and Visser, M., Effective action for stochastic partial differential equations, Phys. Rev. E, 60 (1999), pp. 6343-6360, doi:10.1103/PhysRevE.60.6343. · Zbl 1062.82512
[37] Hochberg, D., Molina-París, C., Pérez-Mercader, J., and Visser, M., Effective potential for the reaction-diffusion-decay system, J. Stat. Phys., 99 (2000), pp. 903-941, doi:10.1023/A:1018699630306. · Zbl 0959.82021
[38] Hoffman, P. F., Kaufman, A. J., Halverson, G. P., and Schrag, D. P., A neoproterozoic snowball Earth, Science, 281 (1998), pp. 1342-1346, doi:10.1126/science.281.5381.1342.
[39] Horsthemke, W. and Bach, A., Onsager-Machlup Function for one dimensional nonlinear diffusion processes, Z. Phys. B Condens. Matter, 22 (1975), pp. 189-192, doi:10.1007/BF01322364.
[40] Kassam, A. K. and Trefethen, L., Fourth-order time-stepping for Stiff PDEs, SIAM J. Sci. Comput., 26 (2005), pp. 1214-1233, doi:10.1137/S1064827502410633. · Zbl 1077.65105
[41] Kästner, J., Umbrella sampling, WIREs Comput. Mol. Sci., 1 (2011), pp. 932-942, doi:10.1002/wcms.66.
[42] Kohn, R. V., Reznikoff, M. G., and Vanden-Eijnden, E., Magnetic elements at finite temperature and large deviation theory, J. Nonlinear Sci., 15 (2005), pp. 223-253, doi:10.1007/s00332-005-0671-z. · Zbl 1107.82068
[43] Konarovskyi, V., Lehmann, T., and von Renesse, M., On Dean-Kawasaki dynamics with smooth drift potential, J. Stat. Phys., 178 (2020), pp. 666-681, doi:10.1007/s10955-019-02449-3. · Zbl 1447.60105
[44] Kumar, S., Rosenberg, J. M., Bouzida, D., Swendsen, R. H., and Kollman, P. A., The weighted histogram analysis method for free-energy calculations on biomolecules. \({\rm I}\). The method, J. Comput. Chem., 13 (1992), pp. 1011-1021, doi:10.1002/jcc.540130812.
[45] Laio, A. and Parrinello, M., Escaping free-energy minima, Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 12562-12566, doi:10.1073/pnas.202427399.
[46] Levinthal, C., Are there pathways for protein folding?, J. Chimie Phys., 65 (1968), pp. 44-45, doi:10.1051/jcp/1968650044.
[47] Lucente, D., Herbert, C., and Bouchet, F., Committor functions for climate phenomena at the predictability margin: The example of El Niño-Southern Oscillation in the Jin and Timmermann model, J. Atmos. Sci., 79 (2022), pp. 2387-2400, doi:10.1175/JAS-D-22-0038.1.
[48] Lucente, D., Rolland, J., Herbert, C., and Bouchet, F., Coupling rare event algorithms with data-based learned committor functions using the analogue Markov chain, J. Stat. Mech. Theory Exp., 2022 (2022), 083201, doi:10.1088/1742-5468/ac7aa7. · Zbl 1539.68273
[49] Magnasco, M., Forced thermal ratchets, Phys. Rev. Lett., 71 (1993), pp. 1477-1481, doi:10.1103/PhysRevLett.71.1477.
[50] Mandelli, D., Hirshberg, B., and Parrinello, M., Metadynamics of paths, Phys. Rev. Lett., 125 (2020), 026001, doi:10.1103/PhysRevLett.125.026001.
[51] Otto, F., Weber, H., and Westdickenberg, M., Invariant measure of the stochastic Allen-Cahn equation: The regime of small noise and large system size, Electron. J. Probab., 19 (2014), pp. 1-76, doi:10.1214/EJP.v19-2813. · Zbl 1291.60135
[52] Passerone, D. and Parrinello, M., Action-derived molecular dynamics in the study of rare events, Phys. Rev. Lett., 87 (2001), 108302.
[53] Pierrehumbert, R., Abbot, D., Voigt, A., and Koll, D., Climate of the Neoproterozoic, Annu. Rev. Earth Planet. Sci., 39 (2011), pp. 417-460, doi:10.1146/annurev-earth-040809-152447.
[54] Pinski, F. J. and Stuart, A. M., Transition paths in molecules at finite temperature, J. Chem. Phys., 132 (2010), 184104, doi:10.1063/1.3391160.
[55] Reznikoff, M. G. and Vanden-Eijnden, E., Invariant measures of stochastic partial differential equations and conditioned diffusions, C. R. Math., 340 (2005), pp. 305-308, doi:10.1016/j.crma.2004.12.025. · Zbl 1063.60092
[56] Rolland, J., Bouchet, F., and Simonnet, E., Computing transition rates for the 1-D stochastic Ginzburg-Landau-Allen-Cahn equation for finite-amplitude noise with a rare event algorithm, J. Stat. Phys., 162 (2016), pp. 277-311, doi:10.1007/s10955-015-1417-4. · Zbl 1334.35330
[57] Schorlepp, T., Grafke, T., May, S., and Grauer, R., Spontaneous symmetry breaking for extreme vorticity and strain in the three-dimensional Navier-Stokes equations, Philos. Trans. Roy. Soc. A, 380 (2022), 20210051, doi:10.1098/rsta.2021.0051.
[58] Stuart, A. M., Voss, J., and Wilberg, P., Conditional path sampling of SDEs and the Langevin MCMC method, Commun. Math. Sci., 2 (2004), pp. 685-697. · Zbl 1082.65004
[59] Thiede, E. H., Giannakis, D., Dinner, A. R., and Weare, J., Galerkin approximation of dynamical quantities using trajectory data, J. Chem. Phys., 150 (2019), 244111, doi:10.1063/1.5063730.
[60] Torrie, G. M. and Valleau, J. P., Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling, J. Comput. Phys., 23 (1977), pp. 187-199, doi:10.1016/0021-9991(77)90121-8.
[61] Van Erp, T. S., Moroni, D., and Bolhuis, P. G., A novel path sampling method for the calculation of rate constants, J. Chem. Phys., 118 (2003), pp. 7762-7774.
[62] Vanden-Eijnden, E., Transition path theory, in Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology, , Ferrario, M., Ciccotti, G., and Binder, K., eds., Springer, 2006, pp. 453-493, doi:10.1007/3-540-35273-2_13.
[63] Vanden-Eijnden, E. and Westdickenberg, M. G., Rare events in stochastic partial differential equations on large spatial domains, J. Stat. Phys., 131 (2008), pp. 1023-1038, doi:10.1007/s10955-008-9537-8. · Zbl 1214.82072
[64] Wittkowski, R., Tiribocchi, A., Stenhammar, J., Allen, R. J., Marenduzzo, D., and Cates, M. E., Scalar \(\phi^4\) field theory for active-particle phase separation, Nat. Commun., 5 (2014), 4351, doi:10.1038/ncomms5351.
[65] Zagli, N., Lucarini, V., and Pavliotis, G. A., Response Theory Identifies Reaction Coordinates and Explains Critical Phenomena in Noisy Interacting Systems, doi:10.48550/arXiv.2303.09047, 2023.
[66] Zhao, T., Fu, H., Lelièvre, T., Shao, X., Chipot, C., and Cai, W., The extended generalized adaptive biasing force algorithm for multidimensional free-energy calculations, J. Chem. Theory Comput., 13 (2017), pp. 1566-1576, doi:10.1021/acs.jctc.7b00032.
[67] Zinn-Justin, J., Quantum Field Theory and Critical Phenomena, Internat. Ser. Monogr. Phys., Oxford University Press, 2002.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.