×

Exponential convergence of a generalized FEM for heterogeneous reaction-diffusion equations. (English) Zbl 1532.65113

Summary: A generalized finite element method (FEM) is proposed for solving a heterogeneous reaction-diffusion equation with a singular perturbation parameter \(\varepsilon\), based on locally approximating the solution on each subdomain by solution of a local reaction-diffusion equation and eigenfunctions of a local eigenproblem. These local problems are posed on some domains slightly larger than the subdomains with oversampling size \(\delta^{\ast}\). The method is formulated at the continuous level as a direct discretization of the continuous problem and at the discrete level as a coarse-space approximation for its standard finite element (FE) discretizations. Exponential decay rates for local approximation errors with respect to \(\delta^{\ast}/\varepsilon\) and \(\delta^{\ast}/h\) (at the discrete level with \(h\) denoting the fine FE mesh size) and with the local degrees of freedom are established. In particular, it is shown that the method at the continuous level converges uniformly with respect to \(\varepsilon\) in the standard \(H^1\) norm, and that if the oversampling size is relatively large with respect to \(\varepsilon\) and \(h\) (at the discrete level), the solutions of the local reaction-diffusion equations provide good local approximations for the solution and thus the local eigenfunctions are not needed. Numerical results are provided to verify the theoretical results.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs

Software:

CSparse

References:

[1] Abdulle, A. and Huber, M. E., Discontinuous Galerkin finite element heterogeneous multiscale method for advection-diffusion problems with multiple scales, Numer. Math., 126 (2014), pp. 589-633, doi:10.1007/s00211-013-0578-9. · Zbl 1296.65150
[2] Babuška, I., Huang, X., and Lipton, R., Machine computation using the exponentially convergent multiscale spectral generalized finite element method, ESAIM Math. Model. Numer. Anal., 48 (2014), pp. 493-515, doi:10.1051/m2an/2013117. · Zbl 1320.74097
[3] Babuska, I. and Lipton, R., Optimal local approximation spaces for generalized finite element methods with application to multiscale problems, Multiscale Model. Simul., 9 (2011), pp. 373-406, doi:10.1137/100791051. · Zbl 1229.65195
[4] Babuška, I. and Melenk, J. M., The partition of unity method, Internat. J. Numer. Methods Engrg., 40 (1997), pp. 727-758, doi:10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N. · Zbl 0949.65117
[5] Bakhvalov, N. S., On the optimization of the methods for solving boundary value problems in the presence of a boundary layer, Zh. Vychisl. Mat. Mat. Fiz., 9 (1969), pp. 841-859. · Zbl 0208.19103
[6] Banjai, L., Melenk, J. M., and Schwab, C., Exponential Convergence of \(hp\) FEM for Spectral Fractional Diffusion in Polygons, preprint, arXiv:2011.05701, 2020.
[7] Bebendorf, M. and Hackbusch, W., Existence of \(\mathcal{H} \)-matrix approximants to the inverse FE-matrix of elliptic operators with \(L^{\infty } \)-coefficients, Numer. Math., 95 (2003), pp. 1-28, doi:10.1007/s00211-002-0445-6. · Zbl 1033.65100
[8] Birman, M. Š. and Solomjak, M., Quantitative Analysis in Sobolev Imbedding Theorems and Applications to Spectral Theory, , AMS, Providence, RI, 1980. · Zbl 0426.46020
[9] Brenner, S. C. and Scott, L. R., The Mathematical Theory of Finite Element Methods, 3rd ed., , Springer, New York, 2008. · Zbl 1135.65042
[10] Calo, V. M., Chung, E. T., Efendiev, Y., and Leung, W. T., Multiscale stabilization for convection-dominated diffusion in heterogeneous media, Comput. Methods Appl. Mech. Engrg., 304 (2016), pp. 359-377, doi:10.1016/j.cma.2016.02.014. · Zbl 1423.76215
[11] Chung, E. T., Efendiev, Y., and Leung, W. T., Multiscale stabilization for convection-diffusion equations with heterogeneous velocity and diffusion coefficients, Comput. Math. Appl., 79 (2020), pp. 2336-2349, doi:10.1016/j.camwa.2019.11.002. · Zbl 1437.65181
[12] Clément, P., Approximation by finite element functions using local regularization, Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique, 9 (1975), pp. 77-84. · Zbl 0368.65008
[13] Davis, T. A., Direct Methods for Sparse Linear Systems, , SIAM, Philadelphia, 2006, doi:10.1137/1.9780898718881. · Zbl 1119.65021
[14] Demlow, A., Guzmán, J., and Schatz, A., Local energy estimates for the finite element method on sharply varying grids, Math. Comput., 80 (2011), pp. 1-9, doi:10.1090/S0025-5718-2010-02353-1. · Zbl 1220.65154
[15] Efendiev, Y., Galvis, J., and Wu, X.-H., Multiscale finite element methods for high-contrast problems using local spectral basis functions, J. Comput. Phys., 230 (2011), pp. 937-955, doi:10.1016/j.jcp.2010.09.026. · Zbl 1391.76321
[16] Fernando, H., Harder, C., Paredes, D., and Valentin, F., Numerical multiscale methods for a reaction-dominated model, Computer Methods Appl. Mech. Engrg., 201 (2012), pp. 228-244, doi:10.1016/j.cma.2011.09.007. · Zbl 1239.65069
[17] Franca, L. P., Madureira, A. L., Tobiska, L., and Valentin, F., Convergence analysis of a multiscale finite element method for singularly perturbed problems, Multiscale Model. Simul., 4 (2005), pp. 839-866, doi:10.1137/040608490. · Zbl 1091.65108
[18] Franca, L. P., Madureira, A. L., and Valentin, F., Towards multiscale functions: Enriching finite element spaces with local but not bubble-like functions, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 3006-3021, doi:10.1016/j.cma.2004.07.029. · Zbl 1091.76034
[19] Harder, C., Paredes, D., and Valentin, F., On a multiscale hybrid-mixed method for advective-reactive dominated problems with heterogeneous coefficients, Multiscale Model. Simul., 13 (2015), pp. 491-518, doi:10.1137/130938499. · Zbl 1317.65222
[20] Kadalbajoo, M. K. and Gupta, V., A brief survey on numerical methods for solving singularly perturbed problems, Appl. Math. Comput., 217 (2010), pp. 3641-3716, doi:10.1016/j.amc.2010.09.059. · Zbl 1208.65105
[21] Kim, M.-Y. and Wheeler, M. F., A multiscale discontinuous Galerkin method for convection-diffusion-reaction problems, Comput. Math. Appl., 68 (2014), pp. 2251-2261, doi:10.1016/j.camwa.2014.08.007. · Zbl 1361.35044
[22] Bris, C. Le, Legoll, F., and Madiot, F., A numerical comparison of some multiscale finite element approaches for advection-dominated problems in heterogeneous media, ESAIM Math. Model. Numer. Anal., 51 (2017), pp. 851-888, doi:10.1051/m2an/2016057. · Zbl 1373.65083
[23] Lin, R. and Stynes, M., A balanced finite element method for singularly perturbed reaction-diffusion problems, SIAM J. Numer. Anal., 50 (2012), pp. 2729-2743, doi:10.1137/110837784. · Zbl 1260.65103
[24] Ma, C., Alber, C., and Scheichl, R., Wavenumber Explicit Convergence of a Multiscale Generalized Finite Element Method for Heterogeneous Helmholtz Problems, preprint, arXiv:2112.10544, 2021.
[25] Ma, C. and Scheichl, R., Error estimates for fully discrete generalized FEMs with locally optimal spectral approximations, Math. Comput., 91 (2022), pp. 2539-2569, doi:10.1090/mcom/3755. · Zbl 1521.65126
[26] Ma, C., Scheichl, R., and Dodwell, T., Novel design and analysis of generalized finite element methods based on locally optimal spectral approximations, SIAM J. Numer. Anal., 60 (2022), pp. 244-273, doi:10.1137/21M1406179. · Zbl 1540.65490
[27] Målqvist, A., Multiscale methods for elliptic problems, Multiscale Model. Simul., 9 (2011), pp. 1064-1086, doi:10.1137/090775592. · Zbl 1248.65124
[28] Målqvist, A. and Peterseim, D., Localization of elliptic multiscale problems, Math. Comput., 83 (2014), pp. 2583-2603, doi:10.1090/S0025-5718-2014-02868-8. · Zbl 1301.65123
[29] Melenk, J. M., On the robust exponential convergence of hp finite element methods for problems with boundary layers, IMA J. Numer. Anal., 17 (1997), pp. 577-601, doi:10.1093/imanum/17.4.577. · Zbl 0887.65106
[30] Melenk, J. M., hp-Finite Element Methods for Singular Perturbations, , Springer, Berlin, 2002. · Zbl 1021.65055
[31] Melenk, J. M. and Xenophontos, C., Robust exponential convergence of hp-FEM in balanced norms for singularly perturbed reaction-diffusion equations, Calcolo, 53 (2016), pp. 105-132, doi:10.1007/s10092-015-0139-y. · Zbl 1336.65148
[32] Park, P. J. and Hou, T. Y., Multiscale numerical methods for singularly perturbed convection-diffusion equations, Int. J. Comput. Methods, 1 (2004), pp. 17-65, doi:10.1142/S0219876204000071. · Zbl 1182.76902
[33] Pinkus, A., n-Widths in Approximation Theory, Springer-Verlag, Berlin, 1985. · Zbl 0551.41001
[34] Roos, H.-G. and Schopf, M., Convergence and stability in balanced norms of finite element methods on Shishkin meshes for reaction-diffusion problems, ZAMM J. Appl. Math. Mech., 95 (2015), pp. 551-565, doi:10.1002/zamm.201300226. · Zbl 1326.65163
[35] Roos, H.-G., Stynes, M., and Tobiska, L., Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems, 2nd ed., , Springer, Berlin, 2008. · Zbl 1155.65087
[36] Schleuß, J. and Smetana, K., Optimal local approximation spaces for parabolic problems, Multiscale Model. Simul., 20 (2022), pp. 551-582, doi:10.1137/20M1384294. · Zbl 1487.65157
[37] Shishkin, G., Grid approximation of singularly perturbed boundary value problems with a regular boundary layer, Sov. J. Numer. Anal. Math. Model., 4 (1989), pp. 397-417. · Zbl 0825.65057
[38] Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., and Scheichl, R., Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps, Numer. Math., 126 (2014), pp. 741-770, doi:10.1007/s00211-013-0576-y. · Zbl 1291.65109
[39] Zhao, L. and Chung, E., Constraint Energy Minimizing Generalized Multiscale Finite Element Method for Convection Diffusion Equation, preprint, arXiv:2203.16035, 2022.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.