×

Boundedness of integral operators of double phase. (English) Zbl 1531.31011

Summary: Our aim in this note is to establish a Sobolev-type inequality and Trudinger-type inequality for fractional maximal and Riesz potential operators in the framework of general double phase functionals given by \[ \varphi (x,t) = \varphi_1 (t) + \varphi_2 (b(x)t), \, x\in \mathbb{R}^n, \, t\geqslant 0, \] where \(\varphi_1\), \(\varphi_2\) are positive convex functions on \((0, \infty)\) and \(b\) is a nonnegative function on \([0,\infty)\) which Hölder continuous of order \(\theta \in (0,1]\).

MSC:

31B15 Potentials and capacities, extremal length and related notions in higher dimensions
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI

References:

[1] D. R. ADAMS AND L. I. HEDBERG, Function Spaces and Potential Theory, Springer, 1996.
[2] A. ALBERICO AND A. CIANCHI, Differentiability properties of Orlicz-Sobolev functions, Ark. Mat. 43 (2005), 1-28. · Zbl 1119.46030
[3] P. BARONI, M. COLOMBO AND G. MINGIONE, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations 57 (2018), no. 2, Paper No. 62, 48 pp. · Zbl 1394.49034
[4] P. BARONI, M. COLOMBO AND G. MINGIONE, Non-autonomous functionals, borderline cases and related function classes, St Petersburg Math. J. 27 (2016), 347-379. · Zbl 1335.49057
[5] S. S. BYUN, N. CHO AND Y. YOUN, Global gradient estimates for a borderline case of double phase problems with measure data, J. Math. Anal. Appl. 501 (2021), 124072, 31 pp. · Zbl 1466.35061
[6] A. CIANCHI, Strong and weak type inequalities for some classical operators in Orlicz spaces, J. London Math. Soc. (2) 60 (1999), no. 1, 187-202. · Zbl 0940.46015
[7] M. COLOMBO AND G. MINGIONE, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2015), no. 2, 443-496. · Zbl 1322.49065
[8] M. COLOMBO AND G. MINGIONE, Bounded minimizers of double phase variational integrals, Arch. Rat. Mech. Anal. 218 (2015), 219-273. · Zbl 1325.49042
[9] D. E. EDMUNDS, P. GURKA AND B. OPIC, Double exponential integrability, Bessel potentials and embedding theorems, Studia Math. 115 (1995), 151-181. · Zbl 0829.47024
[10] D. E. EDMUNDS, P. GURKA AND B. OPIC, Sharpness of embeddings in logarithmic Bessel-potential spaces, Proc. Royal Soc. Edinburgh. 126 (1996), 995-1009. · Zbl 0860.46024
[11] D. E. EDMUNDS AND R. HURRI-SYRJÄNEN, Sobolev inequalities of exponential type, Israel. J. Math. 123 (2001), 61-92. · Zbl 0991.46019
[12] D. E. EDMUNDS AND M. KRBEC, Two limiting cases of Sobolev imbeddings, Houston J. Math. 21 (1995), 119-128. · Zbl 0835.46027
[13] C. DE FILIPPIS AND G. PALATUCCI, Hölder regularity for nonlocal double phase equations, J. Dif-ferential Equations 267 (2019), no. 1, 547-586. · Zbl 1412.35041
[14] P. HARJULEHTO, P. HÄSTÖ AND M. LEE, Hölder continuity of quasiminimizers and ω -minimizers of functionals with generalized Orlicz growth, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) XXII (2021), 549-582. · Zbl 1482.46034
[15] F.-Y. MAEDA, Y. MIZUTA, T. OHNO AND T. SHIMOMURA, Sobolev’s inequality for double phase functionals with variable exponents, Forum Math. 31 (2019), 517-527. · Zbl 1423.46049
[16] F.-Y. MAEDA, Y. MIZUTA, T. OHNO AND T. SHIMOMURA, Trudinger’s inequality for double phase functionals with variable exponents, Czechoslovak Math. J. 71 (2021), 511-528. · Zbl 1513.46054
[17] Y. MIZUTA, Potential Theory in Euclidean Spaces, Gakkōtosyo, Tokyo, 1996.
[18] Y. MIZUTA, T. OHNO AND T. SHIMOMURA, Integrability of maximal functions for generalized Lebesgue spaces with variable exponent, Math. Nachr. 281 (2008), 386-395. · Zbl 1143.46010
[19] Y. MIZUTA, T. OHNO AND T. SHIMOMURA, Sobolev’s theorem for double phase functionals, Math. Ineq. Appl. 23 (2020), 17-33. · Zbl 1453.46021
[20] Y. MIZUTA, T. OHNO AND T. SHIMOMURA, Boundedness of fractional maximal operators for double phase functionals with variable exponents, J. Math. Anal. Appl. 501 (2021), no. 1, 124360. · Zbl 1478.46028
[21] Y. MIZUTA AND T. SHIMOMURA, Exponential integrability for Riesz potentials of functions in Orlicz classes, Hiroshima Math. J. 28 (1998), 355-371. · Zbl 0917.31004
[22] Y. MIZUTA AND T. SHIMOMURA, Continuity properties of Riesz potentials of Orlicz functions, To-hoku Math. J. 61 (2009), 225-240. · Zbl 1181.46026
[23] Y. MIZUTA AND T. SHIMOMURA, Hardy-Sobolev inequalities in the unit ball for double phase func-tionals, J. Math. Anal. Appl. 501 (2021), 124133, 17 pp. · Zbl 1478.46037
[24] Y. MIZUTA AND T. SHIMOMURA, Boundary growth of Sobolev functions of monotone type for double phase functionals, Ann. Fenn. Math. 47 (2022), 23-37. · Zbl 1481.31002
[25] Y. MIZUTA AND T. SHIMOMURA, Hardy-Sobolev inequalities and boundary growth of Sobolev func-tions for double phase functionals on the half space, to appear in Ricerche di Matematica. · Zbl 07909902
[26] M. A. RAGUSA AND A. TACHIKAWA, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal. 9 (2020), no. 1, 710-728. · Zbl 1420.35145
[27] E. M. STEIN, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970. · Zbl 0207.13501
[28] V. V. ZHIKOV, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 675-710.
[29] September 22, 2022) Yoshihiro Mizuta Graduate School of Advanced Science and Engineering Hiroshima University Higashi-Hiroshima 739-8521, Japan e-mail: yomizuta@hiroshima-u.ac.jp
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.