×

On nonmonogenic algebraic number fields. (English) Zbl 1531.11101

Let \(p\) be a prime number and \(f (x) = x^{p^ s}- ax^m- b\) belonging to \(\mathbb Z[x]\) be an irreducible polynomial. Let \( K = \mathbb Q(\theta )\) be an algebraic number field with \(\theta\) a root of \( f (x)\). Let \(r_1\) stand for the highest power of \(p\) dividing \(b^{p^s}- b -ab^m.\) This paper gives some explicit conditions involving only \(a, b, m, r_1,s\) for which \(K\) is not monogenic. In particular, it is shown that when \(p\) is an odd prime and \(s \geq r_1 > p\), then \(K\) is not monogenic. Like in several papers giving non-monogenic fields, the proof is based on a theorem of product of Ore and Dedekind’s Theorem on splitting of primes.

MSC:

11R04 Algebraic numbers; rings of algebraic integers
11R21 Other number fields

References:

[1] S. Ahmad, T. Nakahara, and A. Hameed, “On certain pure sextic fields related to a problem of Hasse”, Internat. J. Algebra Comput. 26:3 (2016), 577-583. · Zbl 1404.11124 · doi:10.1142/S0218196716500259
[2] Y. Bilu, I. Gaál, and K. Győry, “Index form equations in sextic fields: a hard computation”, Acta Arith. 115:1 (2004), 85-96. · Zbl 1064.11084 · doi:10.4064/aa115-1-7
[3] R. Dedekind, “Über den Zusammenhang zwischen der Theorie der ideale und der Theorie der höheren Congruenzen”, pp. 3-38, 1878.
[4] L. El Fadil, “On integral bases and monogeneity of pure sextic number fields with non-squarefree coefficients”, J. Number Theory 228 (2021), 375-389. · Zbl 1479.11182 · doi:10.1016/j.jnt.2021.03.025
[5] L. El Fadil, “On non monogenity of certain number fields defined by trinomials \[x^6+ax^3+b\]”, J. Number Theory 239 (2022), 489-500. · Zbl 1494.11084 · doi:10.1016/j.jnt.2021.10.017
[6] I. Gaál, “Power integer bases in algebraic number fields”, Ann. Univ. Sci. Budapest. Sect. Comput. 18 (1999), 61-87. · Zbl 0936.11072
[7] I. Gaál, Diophantine equations and power integral bases, 2nd ed., Springer, 2019. · Zbl 1465.11090 · doi:10.1007/978-3-030-23865-0
[8] I. Gaál, P. Olajos, and M. Pohst, “Power integral bases in orders of composite fields”, Experiment. Math. 11:1 (2002), 87-90. · Zbl 1020.11064 · doi:10.1080/10586458.2002.10504471
[9] I. Gaál and L. Remete, “Integral bases and monogenity of pure fields”, J. Number Theory 173 (2017), 129-146. · Zbl 1419.11118 · doi:10.1016/j.jnt.2016.09.009
[10] A. Jakhar, S. K. Khanduja, and N. Sangwan, “Characterization of primes dividing the index of a trinomial”, Int. J. Number Theory 13:10 (2017), 2505-2514. · Zbl 1431.11116 · doi:10.1142/S1793042117501391
[11] A. Jakhar and S. Kumar, “On nonmonogenic number fields defined by \[x^6+ax+b\]”, Canad. Math. Bull. 65:3 (2022), 788-794. · Zbl 1506.11135 · doi:10.4153/S0008439521000825
[12] S. K. Khanduja and S. Kumar, “On prolongations of valuations via Newton polygons and liftings of polynomials”, J. Pure Appl. Algebra 216:12 (2012), 2648-2656. · Zbl 1267.12004 · doi:10.1016/j.jpaa.2012.03.034
[13] A. Pethő and M. E. Pohst, “On the indices of multiquadratic number fields”, Acta Arith. 153:4 (2012), 393-414. · Zbl 1255.11052 · doi:10.4064/aa153-4-4
[14] H. B. Yakkou and L. El Fadil, “On monogenity of certain number fields defined by trinomials”, 2021. · Zbl 1515.11108
[15] H. B. Yakkou and L. El Fadil, “On monogenity of certain pure number fields defined by \[x^{p^r}-m\]”, Int. J. Number Theory 17:10 (2021), 2235-2242 · Zbl 1483.11236 · doi:10.1142/S1793042121500858
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.