×

Variational principles for pointwise preimage entropies. (English) Zbl 1530.37040

Summary: Based on the preimage structure of the system \((X, T)\), M. Hurley [Ergodic Theory Dyn. Syst. 15, No. 3, 557–568 (1995; Zbl 0833.54021)] introduced the notion of pointwise topological preimage entropies \(h_m(T)\) and \(h_p(T)\). Furthermore, from the measure-theoretic point of view, W. Wu and Y. Zhu [Adv. Math. 406, Article ID 108483, 45 p. (2022; Zbl 1502.37044)] introduced a notion of pointwise metric preimage entropy \(h_{m, \mu}(T)\) for a \(T\)-invariant measure \(\mu\) on \(X\), and obtained the variational principle between \(h_{m, \mu}(T)\) and \(h_m(T)\) under the condition of uniform separation of preimages. A natural question is whether a variational principle for \(h_m(T)\) and \(h_{m, \mu}(T)\) without any additional assumptions. In this paper, we define a new version of topological preimage entropy \(h_m(T| \mu)\) relative to a \(T\)-invariant measure \(\mu\), and show that the inequality \(h_{m, \mu}(T) \leqslant h_m(T| \mu) \leqslant h_p(T)\) holds for every \(T\)-invariant probability measure \(\mu\). As a consequence, we obtain that there is a topological dynamical system \((X,T)\) such that the following strict inequality holds: \[ \sup_{\mu \in \mathcal{M}(X,T)} h_{m, \mu}(T) < h_m(T), \] where \(\mathcal{M}(X,T)\) denote the set of all \(T\)-invariant probability measures.

MSC:

37B40 Topological entropy
37A35 Entropy and other invariants, isomorphism, classification in ergodic theory
37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems
54C70 Entropy in general topology
54C05 Continuous maps
Full Text: DOI

References:

[1] Adler, R. L.; Konheim, A. G.; McAndrew, M. H., Topological entropy, Trans. Amer. Math. Soc., 114, 309-319 (1965) · Zbl 0127.13102
[2] Bowen, R., Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153, 401-414 (1971) · Zbl 0212.29201
[3] Cheng, W.; Newhouse, S., Pre-image entropy, Ergod. Th. Dynam. Sys., 25, 1091-1113 (2005) · Zbl 1098.37012
[4] Dinaburg, E. I., On the relations among various entropy characteristic of dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat., 35, 324-366 (1971) · Zbl 0216.44704
[5] Einsiedler, M.; Ward, T., Ergodic Theory with a Towards Number Theory, 259 (2011), Springer-Verlag London Ltd.: Springer-Verlag London Ltd., London · Zbl 1206.37001
[6] Fiebig, D.; Fiebig, U.; Nitecki, Z., Entropy and preimage sets, Ergod. Th. Dynam. Sys., 23, 1785-1806 (2003) · Zbl 1063.37017
[7] Goodman, T. N.T., Relating topological entropy and measure entropy, Bull. London. Math. Soc., 3, 176-180 (1971) · Zbl 0219.54037
[8] Goodwyn, L. W., Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc., 23, 679-688 (1969) · Zbl 0186.09804
[9] Huang, W.; Ye, X.; Zhang, G., A local variational principle for conditional entropy, Ergod. Th. Dynam. Sys., 26, 219-245 (2006) · Zbl 1176.37011
[10] Hurley, M., On topological entropy of maps, Ergod. Th. Dynam. Sys., 15, 557-568 (1995) · Zbl 0833.54021
[11] Kolmogorov, A. N., A new metric invariant of transient dynamical systems and automorphisms of Lebesgue spaces, Dokl. Akad. Soc. SSSR, 119, 861-864 (1958) · Zbl 0083.10602
[12] Langevin, R.; Przytycki, F., Entropie de I’image inverse d’une applicatio, Bull. Soc. Math. France, 120, 237-250 (1992) · Zbl 0757.58023
[13] Langevin, R.; Walczak, P., Entropie d’une dynamique, C. R. Acad. Sci. Pairs Ser. I Math., 312, 141-144 (1991) · Zbl 0723.54020
[14] Mihailescu, E., Metric properties of some fractal sets and applications of inverse pressure, Math. Proc. Camb. Philos. Soc., 148, 553-572 (2010) · Zbl 1205.37049
[15] Mihailescu, E.; Urbański, M., Inverse pressure estimates and the independence of stable dimension for non-invertible maps, Canadian J. Math., 60, 658-684 (2008) · Zbl 1158.37004
[16] Misiurewicz, M., A short proof the variational principle for a \(####\) action on a compact space, Asterisque, 40, 147-187 (1976)
[17] Nadler Jr., Sam B., Continuum Theory: An Introduction, Pure Appl. Math.; Vol. 158, Marcel Dekker Inc., New York, 1992. · Zbl 0757.54009
[18] Nitecki, Z., Topological entropy and the preimage structure of maps, Real Anal. Exchange, 29, 7-39 (20032004)
[19] Nitecki, Z.; Przytycki, F., Preimage entropy for mappings, Int. J. Bifurcation Chaos, 9, 1815-1843 (1999) · Zbl 1089.37506
[20] Rokhlin, V. A., Lectures on the theory of entropy of transformations with invariant measures, Russ. Math. Surv., 22, 1-52 (1967) · Zbl 0174.45501
[21] Sinai, Y. G., On the concept of entropy for a dynamical system, Dokl. Akad. Nauk SSSR, 124, 768-771 (1959) · Zbl 0086.10102
[22] Walters, P., An Introduction to Ergodic Theory, 79 (1982), Springer-Verlag: Springer-Verlag, New York-Berlin · Zbl 0475.28009
[23] Wu, W.; Zhu, Y., On preimage entropy, folding entropy and stable entropy, Ergod. Th. Dynam. Sys., 41, 1217-1249 (2021) · Zbl 1461.37037
[24] Wu, W.; Zhu, Y., Entropy via preimage structure, Adv. Math., 406 (2022) · Zbl 1502.37044 · doi:10.1016/j.aim.2022.108483
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.