×

A gradient-based search method for multi-objective optimization problems. (English) Zbl 1529.90073

Summary: A gradient-based search method (GBSM) is developed to solve multi-objective optimization problems. It uses the multi-objective gradient information to construct descent directions, i.e., Pareto descent directions (PDDs), to accelerate the convergence. In addition, a multi-objective evolutionary algorithm based on decomposition is adopted to improve the diversity. The comparisons between GBSM with several selected multi-objective evolutionary algorithms and gradient based algorithms on benchmark functions indicate that the proposed method performs competitively and effectively.

MSC:

90C29 Multi-objective and goal programming
Full Text: DOI

References:

[1] Tian, Y.; Cheng, R.; Zhang, X.; Su, Y.; Jin, Y., A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization, IEEE Trans. Evol. Comput., 23, 2, 331-345 (2019)
[2] Yu, G.; Jin, Y.; Olhofer, M., A Multiobjective Evolutionary Algorithm for Finding Knee Regions Using Two Localized Dominance Relationships, IEEE Trans. Evol. Comput., 25, 1, 145-158 (2020)
[3] Santos, T.; Takahashi, R. H.C., On the Performance Degradation of Dominance-Based Evolutionary Algorithms in Many-Objective Optimization, IEEE Trans. Evol. Comput., 22, 1, 19-31 (2016)
[4] Deb, K.; Jain, H., An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part I: Solving problems with box constraints, IEEE Trans. Evol. Comput., 18, 4, 577-601 (2014)
[5] Yang, S.; Li, M.; Liu, X.; Zheng, J., A grid-based evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput., 17, 5, 721-736 (2013)
[6] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6, 2, 182-197 (2002)
[7] Beume, N.; Naujoks, B.; Emmerich, M., SMS-EMOA: Multiobjective selection based on dominated hypervolume, Eur. J. Oper. Res., 181, 3, 1653-1669 (2007) · Zbl 1123.90064
[8] Shang, K.; Ishibuchi, H.; Ni, X., R2-Based Hypervolume Contribution Approximation, IEEE Trans. Evol. Comput., 24, 1, 185-192 (2019)
[9] Tian, Y.; Cheng, R.; Zhang, X.; Jin, Y., An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility, IEEE Trans. Evol. Comput., 22, 4, 609-622 (2018)
[10] Yuan, J.; Liu, H.; Gu, F.; Zhang, Q.; He, Z., Investigating the Properties of Indicators and an Evolutionary Many-Objective Algorithm Using Promising Regions, IEEE Trans. Evol. Comput., 25, 1, 75-86 (2020)
[11] Zhang, Q.; Hui, L., MOEA/D: a multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11, 6, 712-731 (2008)
[12] Xiang, Y.; Yang, X.; Zhou, Y.; Huang, H., Enhancing Decomposition-Based Algorithms by Estimation of Distribution for Constrained Optimal Software Product Selection, IEEE Trans. Evol. Comput., 24, 2, 245-259 (2019)
[13] Wang, R.; Zhang, Q.; Zhang, T., Decomposition-based algorithms using Pareto adaptive scalarizing methods, IEEE Trans. Evol. Comput., 12, 4, 73-87 (2017)
[14] Jiang, S.; Yang, S., An improved multiobjective optimization evolutionary algorithm based on decomposition for complex Pareto Fronts, IEEE Trans. Evol. Comput., 46, 2, 421-437 (2016)
[15] Deb, K., Multi-objective optimisation using evolutionary algorithms: an introduction (2011), Multi-Objective Evolutionary Optimisation for Product Design and Manufacturing: Multi-Objective Evolutionary Optimisation for Product Design and Manufacturing in
[16] Izui, K.; Yamada, T.; Nishiwaki, S.; Tanaka, K., Multiobjective optimization using an aggregative gradient-based method, Struct. Multidiscip. Optim., 51, 1, 173-182 (2015)
[17] V.A.S. Hernández, O. Sch \(\ddot{u}\) tze, H. Wang, A. Deutz, M., Emmerich, The set-based hypervolume newton method for bi-objective optimization. IEEE Trans. Cyber. 50 (5) (2018) 2186-2196.
[18] Bosman, P. A.N., On gradients and hybrid evolutionary algorithms for real-valued multiobjective optimization, IEEE Trans. Evol. Comput., 16, 1, 51-69 (2012)
[19] Bosman, P. A.N.; Thierens, D., Adaptive variance scaling in continuous multiobjective estimation-of-distribution algorithms, in, Proc. GECCO (2007)
[20] Lara, A.; Sanchez, G.; Coello, C. A.C., HCS: A New Local Search Strategy for Memetic Multiobjective Evolutionary Algorithms, IEEE Trans. Evol. Comput., 14, 1, 112-132 (2010)
[21] Han, H.; Lu, W.; Zhang, L.; Qian, J., Adaptive Gradient Multiobjective Particle Swarm Optimization, IEEE Trans. Evol. Comput., 48, 11, 3067-3079 (2018)
[22] Cheng, R.; Li, M.; Tian, Y.; Zhang, X.; Yang, S.; Jin, Y.; Yao, X., A benchmark test suite for evolutionary many-objective optimization, Complex Intell. Syst., 3, 1, 67-81 (2017)
[23] Sun, Y.; Xue, B.; Zhang, M.; Yen, G. G., A New Two-Stage Evolutionary Algorithm for Many-Objective Optimization, IEEE Trans. Evol. Comput., 23, 5, 748-761 (2019)
[24] He, Z.; Yen, G. G., Many-objective evolutionary algorithm: Objective space reduction and diversity improvement, IEEE Trans. Evol. Comput., 20, 1, 145-160 (2016)
[25] E. Zitzler, D. Brockhoff, L. Thiele, The hypervolume indicator revisited: on the design of Pareto-compliant indicators via weighted integration, in: EMO, 2006.
[26] Lin, Q.; Liu, S.; Wong, K.; Gong, M.; Coello, C. A.C.; Chen, J.; Zhang, J., A Clustering-Based Evolutionary Algorithm for Many-Objective Optimization Problems, IEEE Trans. Evol. Comput., 23, 3, 391-405 (2019)
[27] Harada, K.; Sakuma, J.; Kobayashi, S., Local search for multiobjective function optimization: Pareto descend method, in, Proc. GECCO (2006)
[28] Ali, M.; Siarry, P.; Pant, M., An efficient differential evolution based algorithm for solving multi-objective optimization problems, Eur. J. Oper. Res., 27, 2, 404-416 (2012) · Zbl 1244.90203
[29] Q. Zhang, A. Zhou, S. Zhao, P. Suganthan, W. Liu, S. Tiwari, Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition, Technical Report CES-887, 2008.
[30] Zitzler, E.; Deb, K.; Thiele, L., Comparison of multiobjective evolutionary algorithms: Empirical results, Evol. Comput., 8, 2, 173-195 (2000)
[31] K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable test problems for evolutionary multiobjective optimization, in: Evolutionary Multiobjective Optimization, 2005. · Zbl 1078.90567
[32] L.C. Bezerra, M. López-Ibáñez, T. Stützle, An empirical assessment of the properties of inverted generational distance on multi-and many-objective optimization, in: International Conference on Evolutionary Multi-Criterion Optimization, 2017, pp. 31-45.
[33] Jain, H.; Deb, K., An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach, IEEE Trans. Evol. Comput., 18, 4, 602-622 (2014)
[34] Liu, Z.; Wang, Y., Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces, IEEE Trans. Evol. Comput., 23, 5, 870-884 (2019)
[35] Li, K.; Chen, R.; Fu, G.; Yao, X., Two-archive evolutionary algorithm for constrained multi-objective optimization, IEEE Trans. Evol. Comput., 23, 2, 303-315 (2018)
[36] Tian, Y.; Zhang, T.; Xiao, J.; Zhang, X.; Jin, Y., A coevolutionary framework for constrained multi-objective optimization problems, IEEE Trans. Evol. Comput., 25, 1, 102-116 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.