×

Large time behavior and stability for two-dimensional magneto-micropolar equations with partial dissipation. (English) Zbl 1529.35493

Summary: This paper is devoted to the stability and decay estimates of solutions to the two-dimensional magneto-micropolar fluid equations with partial dissipation. Firstly, focus on the 2D magneto-micropolar equation with only velocity dissipation and partial magnetic diffusion, we obtain the global existence of solutions with small initial in \(H^s({\mathbb{R}}^2)(s>1)\), and by fully exploiting the special structure of the system and using the Fourier splitting methods, we establish the large time decay rates of solutions. Secondly, when the magnetic field has partial dissipation, we show the global existence of solutions with small initial data in \(\dot{B}^0_{2,1}({\mathbb{R}}^2)\). In addition, we explore the decay rates of these global solutions are correspondingly established in \(\dot{B}^m_{2,1}({\mathbb{R}}^2)\) with \(0 \le m \le s\), when the initial data belongs to the negative Sobolev space \(\dot{H}^{-l}({\mathbb{R}}^2)\) (for each \(0 \le l <1)\).

MSC:

35Q60 PDEs in connection with optics and electromagnetic theory
82D40 Statistical mechanics of magnetic materials

References:

[1] Ahmadi, G.; Shahinpoor, M., Universal stability of magneto-micropolar fluid motions, Int. J. Eng. Sci., 12, 657-663 (1974) · Zbl 0284.76009
[2] Abels, H., Pseudodifferential and Singular Integral Operators (2011), Berlin: De Gruyter, Berlin
[3] Bergh, J.; Löfström, J., Interpolation Spaces. An Introduction (1976), Berlin: Springer, Berlin · Zbl 0344.46071
[4] Bahouri, H.; Chemin, J.; Danchin, R., Fourier Analysis and Nonlinear Partial Differential Equations (2011), Berlin: Springer, Berlin · Zbl 1227.35004
[5] Constantin, P.; Foias, C., Navier-Stokes Equations (1988), Chicago: The University of Chicago Press, Chicago · Zbl 0687.35071
[6] Cao, C.; Wu, J., Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 226, 1803-1822 (2011) · Zbl 1213.35159
[7] Chen, Q.; Miao, C., Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differ. Equ., 252, 2698-2724 (2012) · Zbl 1234.35193
[8] Chen, M., Global well-posedness of the 2D incompressible micropolar fluid flows with partial viscosity and angular viscosity. Acta Math, Sci. Ser. B Engl. Ed., 33, 929-935 (2013) · Zbl 1299.35043
[9] Cao, C.; Wu, J.; Yuan, B., The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion, SIAM J. Math. Anal., 46, 588-602 (2014) · Zbl 1293.35233
[10] Cheng, J.; Liu, Y., Global regularity of the 2D magnetic micropolar fluid flows with mixed partial viscosity, Comput. Math. Appl., 70, 66-72 (2015) · Zbl 1443.35113
[11] Dong, B.; Zhang, Z., Global regularity of the 2D micropolar fluid flows with zero angular viscosity, J. Differ. Equ., 249, 200-213 (2010) · Zbl 1402.35220
[12] Dong, B.; Li, J.; Wu, J., Global well-posedness and large-time decay for the 2D micropolar equations, J. Differ. Equ., 262, 3488-3523 (2017) · Zbl 1361.35143
[13] Dong, B.; Jia, Y.; Li, J.; Wu, J., Global regularity and time decay for the 2D magnetohydrodynamic equations with fractional dissipation and partial magnetic diffusion, J. Math. Fluid Mech., 20, 1541-1565 (2018) · Zbl 1406.35269
[14] Du, L.; Zhou, D., Global well-posedness of two-dimensional magnetohydrodynamic flows with partial dissipation and magnetic diffusion, SIAM J. Math. Anal., 47, 1562-1589 (2015) · Zbl 1323.35143
[15] Eringen, A., Simple microfluids, Int. Eng. Sci., 2, 205-217 (1964) · Zbl 0136.45003
[16] Eringen, A., Theory of micropolar fluids, J. Math. Mech., 16, 1-18 (1966)
[17] Guo, Y.; Shang, H., Global well-posedness of two-dimensional magneto-micropolar equations with partial dissipation, Appl. Math. Comput., 313, 392-407 (2017) · Zbl 1426.35188
[18] Guo, Y.; Jia, Y.; Dong, B., Time decay rates of the micropolar equations with zero angular viscosity, Bull. Malays. Math. Sci. Soc., 44, 6, 3663-3675 (2021) · Zbl 1477.35163
[19] Leray, J., Sur le mouvement d’un liquide visqueux emplissant I’espace, Acta Math., 63, 193-248 (1934) · JFM 60.0726.05
[20] Łukaszewicz, G., Micropolar Fluids. Theory and Applications. Modeling and Simulation in Science, Engineering and Technology (1999), Boston: Birkhäuser Boston, Inc., Boston · Zbl 0923.76003
[21] Li, M., Stability and times decay rates of the 2D magneto-micropolar equations with partial dissipation, Z. Angew. Math. Phys., 100, 1-20 (2022) · Zbl 1490.35334
[22] Miao, C.; Wu, J.; Zhang, Z., Littlewood-Paley Theory and its Applications in Partial Differential Equations of Fluid Dynamics (2012), Beijing: Science Press, Beijing
[23] Ma, L., On two-dimensional incompressible magneto-micropolar system with mixed partial viscosity, Nonlinear Anal. Real World Appl., 40, 95-129 (2018) · Zbl 1382.35231
[24] Niu, D., Shang, H.: Global well-posedness and optimal time decay rates of solutions to the three-dimensional magneto-micropolar fluid equations (submitted for publication)
[25] Ortega-Torres, E.; Rojas-Medar, M., Magneto-micropolar fluid motion: global existence of strong solutions, Abstr. Appl. Anal., 4, 109-125 (1999) · Zbl 0976.35055
[26] Priest, E.; Fores, T., Magnetic Reconnection. MHD Theory and Application (2000), Cambridge: Cambridge University Press, Cambridge · Zbl 0959.76002
[27] Runst, T.; Sickel, W., Sobolev Spaces of Fractional Order. Nemytskij operators and Nonlinear Partial Differential Equations (1996), Berlin: Walter de Gruyter, Berlin · Zbl 0873.35001
[28] Rojas-Medar, M., Magneto-micropolar fluid motion: existence and uniqueness of strong solution, Math. Nachr., 188, 301-319 (1997) · Zbl 0893.76006
[29] Rojas-Medar, M.; Boldrini, J., Magneto-micropolar fluid motion: existence of weak solutions, Rev. Mat. Complut., 11, 443-460 (1998) · Zbl 0918.35114
[30] Regmi, D.; Wu, J., Global regularity for the 2D magneto-micropolar equations with partial dissipation, J. Math. Study, 49, 169-194 (2016) · Zbl 1363.35296
[31] Stokes, G., On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids, Trans. Camb. Philos. Soc., 8, 287-319 (1845)
[32] Sohinger, V.; Strain, R., The Boltzmann equation, Besov spaces, and optimal time decay rates in \({\mathbb{R} }^n_x\), Adv. Math., 261, 274-332 (2014) · Zbl 1293.35195
[33] Schonbek, M., \(L^2\) decay for weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 88, 209-222 (1985) · Zbl 0602.76031
[34] Schonbek, M., Large time behaviour of solutions to the Navier-Stokes equations, Commun. Partial Differ. Equa., 11, 733-763 (1986) · Zbl 0607.35071
[35] Schonbek, M.; Wiegner, M., On the decay of higher-order norms of the solutions of Navier-Stokes equations, Proc. R. Soc. Edinb. Sect. A, 126, 677-685 (1996) · Zbl 0862.35086
[36] Shang, H.; Zhao, J., Global regularity for 2D magneto-micropolar equations with only microrotational velocity dissipation and magnetic diffusion, Nonlinear Anal., 150, 194-209 (2017) · Zbl 1356.35187
[37] Shang, H.; Gu, C., Global regularity and decay estimates for 2D magneto-micropolar equations with partial dissipation, Z. Angew. Math. Phys., 3, 70-85 (2019) · Zbl 1417.35141
[38] Shang, H.; Wu, J., Global regularity for 2D fractional magneto-micropolar equation, Math. Z., 297, 775-802 (2021) · Zbl 1456.35167
[39] Temam, R., Navier-Stokes Equations. Theory and Numerical Analysis (1977), Amsterdam: North-Holland, Amsterdam · Zbl 0383.35057
[40] Triebel, H., Theory of Function Spaces II (1992), Boston: Birkhauser, Boston · Zbl 0763.46025
[41] Wang, S.; Xu, w.; Liu, J., Initial-boundary value problem for 2D magneto-micropolar equations with zero angular viscosity, Z. Angew. Math. Phys., 72, 72-103 (2021) · Zbl 1464.35258
[42] Yamazaki, K., Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity, Discret. Contin. Dyn. Syst., 35, 2193-2207 (2015) · Zbl 1308.35232
[43] Yamazaki, K., Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity, Discret. Contin. Dyn. Syst., 35, 4, 2193-2207 (2015) · Zbl 1308.35232
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.