×

Resolvent expansions for self-adjoint operators via boundary triplets. (English) Zbl 1529.35312

The authors consider a densely defined closed symmetric operator with equal (possibly infinite) deficiency indexes acting in a complex Hilbert space. Then via a boundary triplet the authors consider a one parameter family of self-adjoint extensions of \(A\) that is associated to a \(C^2\) path of Lagrangian planes and compute second order Taylor expansions for the resolvents and eigenvalue curves of the operators of the one the parameter family of extensions around some appropriate value of the parameter. Next the authors consider a specific form of Lagrangian planes and derive explicit formulas for the first and second order derivatives of the eigenvalues of the extensions that bifurcate from possibly multiple eigenvalues. The authors also provide some explicit example.

MSC:

35P05 General topics in linear spectral theory for PDEs
35B20 Perturbations in context of PDEs
47A55 Perturbation theory of linear operators
47A75 Eigenvalue problems for linear operators

References:

[1] C.Bandle and A.Wagner, Second domain variation for problems with Robin boundary conditions, J. Optim. Theory Appl.167 (2015), 430-463. · Zbl 1329.49082
[2] J.Behrndt, S.Hassi, and H.deSnoo, Boundary value problems, Weyl functions, and differential operators, Springer International Publishing, Berlin, 2020. · Zbl 1457.47001
[3] J.Behrndt and T.Micheler, Elliptic differential operators on Lipschitz domains and abstract boundary value problems, J. Funct. Anal.267 (2014), 3657-3709. · Zbl 1300.35026
[4] G.Berkolaiko, Y.Canzani, G.Cox, and J. L.Marzuola, A local test for global extrema in the dispersion relation of a periodic graph, arXiv: 2004.12931, 2020.
[5] G.Berkolaiko, G.Cox, and J. L.Marzuola, Nodal deficiency, spectral flow, and the Dirichlet‐to‐Neumann map, Lett. Math. Phys.109 (2019), 1611-1623. · Zbl 1417.58022
[6] G.Berkolaiko and P.Kuchment, Spectral shift via “lateral” perturbation, J. Spectr. Theory 12 (2022), no. 1, 83-104. · Zbl 1501.47024
[7] G.Berkolaiko and P.Kuchment, Introduction to quantum graphs, Math. Surveys Monographs, vol. 186, Amer. Math. Soc., Providence, R.I., 2013. · Zbl 1318.81005
[8] G.Berkolaiko, P.Kuchment, and U.Smilansky, Critical partitions and nodal deficiency of billiard eigenfunctions, Geom. Funct. Anal.22 (2012), 1517-1540. · Zbl 1308.35152
[9] B.BooßBavnbek and C.Zhu, The Maslov index in symplectic Banach spaces, Mem. Amer. Math. Soc.252 (2018), x+118. · Zbl 07000096
[10] V. I.Burenkov, P. D.Lamberti, and M.Lantsa de Kristoforis, Spectral stability of nonnegative selfadjoint operators, Sovrem. Mat. Fundam. Napravl.15 (2006), 76-111.
[11] G.Cox, C. K. R. T.Jones, Y.Latushkin, and A.Sukhtayev, The Morse and Maslov indices for multidimensional Schrödinger operators with matrix‐valued potentials, Trans. Amer. Math. Soc.368 (2016), 8145-8207. · Zbl 1351.35028
[12] G.Cox, C. K. R. T.Jones, and J. L.Marzuola, A Morse index theorem for elliptic operators on bounded domains, Comm. Partial Differential Equations40 (2015), 1467-1497. · Zbl 1335.35166
[13] G.Cox, C. K. R. T.Jones, and J. L.Marzuola, Manifold decompositions and indices of Schrödinger operators, Indiana Univ. Math. J.66 (2017), 1573-1602. · Zbl 1408.35018
[14] J.Deng and C.Jones, Multi‐dimensional Morse index theorems and a symplectic view of elliptic boundary value problems, Trans. Amer. Math. Soc.363 (2011), 1487-1508. · Zbl 1210.35056
[15] L.Friedlander, Some inequalities between Dirichlet and Neumann eigenvalues, Arch. Rational Mech. Anal.116 (1991), 153-160. · Zbl 0789.35124
[16] F.Gesztesy and M.Mitrea, A description of all self‐adjoint extensions of the Laplacian and Kreĭn‐type resolvent formulas on non‐smooth domains, J. Anal. Math.113 (2011), 53-172. · Zbl 1231.47044
[17] V. I.Gorbachuk and M. L.Gorbachuk, Boundary value problems for operator differential equations, Math. Appl. (Soviet Series), vol. 48, Kluwer Academic Publishers Group, Dordrecht, 1991. Translated and revised from the 1984 Russian original. · Zbl 0751.47025
[18] P.Grinfeld, Hadamard’s formula inside and out, J. Optim. Theory Appl.146 (2010), 654-690. · Zbl 1209.49006
[19] G.Grubb, A characterization of the non‐local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3)22 (1968), 425-513. · Zbl 0182.14501
[20] B.Helffer and M. P.Sundqvist, Spectral flow for pair compatible equipartitions, Comm. Partial Differential Equations0 (2021), 1-28.
[21] A.Henrot, Extremum problems for eigenvalues of elliptic operators, Frontiers in Mathematics, Birkhäuser, Basel, 2006. · Zbl 1109.35081
[22] D.Henry, Perturbation of the boundary in boundary‐value problems of partial differential equations, Lond. Math. Soc. Lecture Note Ser., vol. 318, Cambridge Univ. Press, Cambridge, 2005. With editorial assistance from Jack Hale and Antônio Luiz Pereira. · Zbl 1170.35300
[23] T.Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer, Berlin, 1995. Reprint of the 1980 edition. · Zbl 0836.47009
[24] Y.Latushkin and S.Sukhtaiev, First‐order asymptotic perturbation theory for extensions of symmetric operators, arXiv:2012.00247, 2020.
[25] Y.Latushkin and S.Sukhtaiev, The Maslov index and the spectra of second order elliptic operators, Adv. Math.329 (2018), 422-486. · Zbl 06863449
[26] Y.Latushkin and S.Sukhtaiev, An index theorem for Schrödinger operators on metric graphs, Analytic trends in mathematical physics, Contemp. Math., vol. 741, Amer. Math. Soc., Providence, R.I., 2020, 105-119. · Zbl 1457.58014
[27] Y.Latushkin and A.Sukhtayev, Hadamard‐type formulas via the Maslov form, J. Evol. Equ.17 (2017), 443-472. · Zbl 1418.34161
[28] M.Reed and B.Simon, Methods of modern mathematical physics. I. Functional analysis, Acad. Press, New York-London, 1972. · Zbl 0242.46001
[29] M.Reed and B.Simon, Methods of modern mathematical physics. IV. Analysis of operators, Acad. Press, New York, N,Y., 1978. · Zbl 0401.47001
[30] J.Robbin and D.Salamon, The spectral flow and the Maslov index, Bull. Lond. Math. Soc.27 (1995), 1-33. · Zbl 0859.58025
[31] K.Schmüdgen, Unbounded self‐adjoint operators on Hilbert space, Grad. Texts Math., vol. 265, Springer, Dordrecht, 2012. · Zbl 1257.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.