×

Poisson generalized Lindley process and its properties. (English) Zbl 1528.60087

Summary: In spite of the practical usefulness of the nonhomogeneous Poisson process, it still has some restrictions. To overcome these restrictions, the Poisson Lindley process has been recently developed and introduced in [J. H. Cha, Stat. Probab. Lett. 152, 74–81 (2019; Zbl 1451.60050)]. In this paper, we further generalize the Poisson Lindley process, so that the developed counting process model should have the restarting property and it should include the generalized Polya process as a special case. Some basic stochastic properties of the developed counting process model are derived. Dependence properties and stochastic comparisons are also discussed under a more general framework.

MSC:

60K10 Applications of renewal theory (reliability, demand theory, etc.)
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
62P30 Applications of statistics in engineering and industry; control charts

Citations:

Zbl 1451.60050
Full Text: DOI

References:

[1] Aven, T.; Jensen, U., Stochastic models in reliability (1999), New York: Springer, New York · Zbl 0926.60006 · doi:10.1007/b97596
[2] Badía, FG; Lee, H., On stochastic comparisons and ageing properties of multivariate proportional hazard rate mixtures, Metrika, 83, 355-375 (2020) · Zbl 1439.62151 · doi:10.1007/s00184-019-00730-9
[3] Badía, FG; Sangüesa, C.; Cha, JH, Univariate and multivariate stochastic comparisons and ageing properties of the generalized Pólya processes, J Appl Probab, 55, 233-253 (2018) · Zbl 1401.60023 · doi:10.1017/jpr.2018.15
[4] Belzunce, F.; Lillo, RE; Ruiz, JM; Shaked, M., Stochastic comparisons of nonhomogeneous processes, Probab Eng Inform Sci, 15, 199-224 (2001) · Zbl 0983.60046 · doi:10.1017/S0269964801152058
[5] Cha, JH, Characterization of the generalized Polya process and its applications, Adv Appl Probab, 46, 1148-1171 (2014) · Zbl 1305.60088 · doi:10.1239/aap/1418396247
[6] Cha, JH, Poisson lindley process and its main properties, Stat Probab Lett, 152, 74-81 (2019) · Zbl 1451.60050 · doi:10.1016/j.spl.2019.04.008
[7] Cha, JH; Mercier, S., Poisson generalized gamma process and its properties, Stochastics, 93, 1123-1140 (2021) · Zbl 1496.60108 · doi:10.1080/17442508.2020.1868469
[8] Cha, JH; Finkelstein, M., Stochastic intensity for minimal repairs in heterogeneous populations, J Appl Probab, 48, 868-876 (2011) · Zbl 1226.60122 · doi:10.1239/jap/1316796921
[9] Cha, JH; Finkelstein, M., Point processes for reliability analysis (2018), London: Springer, London · Zbl 1388.60005 · doi:10.1007/978-3-319-73540-5
[10] Lindley, DV, Fiducial distributions and bayes’ theorem, J Royal Stat Soc Ser B, 20, 102-107 (1958) · Zbl 0085.35503
[11] Ross, SM, Introduction to probability models (2003), San Diego: Academic Press, San Diego · Zbl 1019.60003
[12] Navarro, J.; del Águila, Y., Stochastic comparisons of distorted distributions, coherent systems and mixtures with ordered components, Metrika, 80, 627-648 (2017) · Zbl 1416.62445 · doi:10.1007/s00184-017-0619-y
[13] Navarro, J., Stochastic comparisons of coherent systems, Metrika, 81, 465-482 (2018) · Zbl 1395.62314 · doi:10.1007/s00184-018-0650-7
[14] Shaked, M.; Shanthikumar, JG, Stochastic orders (2007), New York: Springer, New York · Zbl 1111.62016 · doi:10.1007/978-0-387-34675-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.