×

Gaussian phenomena for small quadratic residues and non-residues. (English) Zbl 1528.11074

Let \(p\) be an odd prime and \(n_p\) denote the least quadratic non-residue modulo \(p\). I. M. Vinogradov showed that \(n_p\ll p^{\frac{1}{2\sqrt{e}}}\log p\) and conjectured that \(n_p\ll_{\varepsilon} p^{\varepsilon}\) for any fixed \(\varepsilon>0\). The best upper bound \(n_p\ll p^{\frac{1}{4\sqrt{e}}+\varepsilon}\) is due to D. A. Burgess [Mathematika 4, 106–112 (1957; Zbl 0081.27101)]. Assuming the Generalized Riemann Hypothesis (GRH), N. C. Ankeny [Ann. Math. (2) 55, 65–72 (1952; Zbl 0046.04006)] showed that \(n_p\ll (\log p)^2\), and Y. Lamzouri et al. [Math. Comput. 84, No. 295, 2391–2412 (2015; Zbl 1326.11058)] obtain an explicit bound \(n_p\le (\log p)^2\).
Given an integer \(m\) and a positive integer \(h\), denote \(S_h(m,p)=\sum_{n=m+1}^{m+h}(\frac{n}{p})\). In the paper under review, the authors prove an analogue of the result due to H. Davenport and P. Erdős [Publ. Math. Debr. 2, 252–265 (1953; Zbl 0050.04302)] in very short interval of the form \([1,(\log p)^A]\) with an arbitrary \(A>1\). They show that \(S_h(m,p)\) exhibits Gaussian distribution when \(p\) is restricted to a short interval.
Theorem 1.1. Let \(\eta\in (\frac12,1]\) and \(A>1\) be arbitrary constants. For each prime \(p\), choose an integer \(h_p\) satisfying \(h_p\to\infty\) and \(\frac{\log h_p}{\log\log p}\to 0\) as \(p\to\infty\). Then there exists an \(\eta\)-strong set \(\mathcal{B}\) of primes such that for any \(\lambda\in\mathbb{R}\), \[ \lim_{\substack{p\to\infty\\ p\in\mathcal{B}}} \frac{\#\{1\le m\le (\log p)^A: S_{h_p}(m,p)\le\lambda h_p^{\frac12}\}}{(\log p)^A} = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\lambda} e^{-t^2/2} dt, \] where a subset \(\mathcal{B}\) of prime set \(\mathbb{P}\) is called “\(\eta\)-strong” if \(\#\{(\mathbb{P}\setminus\mathcal{B})\cap [X,X+X^{\eta}]\}\le\frac{X^{\eta}}{(\log X)^{1+\delta}}\) holds for all sufficiently large \(X\) and for some \(\delta>0\).
The other problem treated in the paper is the distribution of quadratic residues and non-residues modulo two distinct primes and how they are related to each other. The authors show that the distribution is also Gaussian.
Reviewer: Ke Gong (Kaifeng)

MSC:

11L40 Estimates on character sums
11N60 Distribution functions associated with additive and positive multiplicative functions
11N36 Applications of sieve methods
Full Text: DOI

References:

[1] Ankeny, N. C., The least quadratic non residue, Ann. of Math. (2), 65-72 (1952) · Zbl 0046.04006 · doi:10.2307/1969420
[2] Baier, Stephan, A remark on the least \(n\) with \(\chi (n)\neq 1\), Arch. Math. (Basel), 67-72 (2006) · Zbl 1084.11050 · doi:10.1007/s00013-005-1382-2
[3] Baker, R. C., The difference between consecutive primes, Proc. London Math. Soc. (3), 261-280 (1996) · Zbl 0853.11076 · doi:10.1112/plms/s3-72.2.261
[4] Baker, R. C., The difference between consecutive primes. II, Proc. London Math. Soc. (3), 532-562 (2001) · Zbl 1016.11037 · doi:10.1112/plms/83.3.532
[5] Bober, Jonathan, The frequency and the structure of large character sums, J. Eur. Math. Soc. (JEMS), 1759-1818 (2018) · Zbl 1409.11079 · doi:10.4171/JEMS/799
[6] Burgess, D. A., The distribution of quadratic residues and non-residues, Mathematika, 106-112 (1957) · Zbl 0081.27101 · doi:10.1112/S0025579300001157
[7] Chan, O-Yeat, A multidimensional version of a result of Davenport-Erd\H{o}s, J. Integer Seq., Article 03.2.6, 9 pp. (2003) · Zbl 1142.11348
[8] Davenport, H., The distribution of quadratic and higher residues, Publ. Math. Debrecen, 252-265 (1952) · Zbl 0050.04302
[9] Duke, W., A problem of Linnik for elliptic curves and mean-value estimates for automorphic representations, Invent. Math., 1-39 (2000) · Zbl 1033.11026 · doi:10.1007/s002229900017
[10] Evertse, J.-H., Uniform bounds for the number of solutions to \(Y^n=f(X)\), Math. Proc. Cambridge Philos. Soc., 237-248 (1986) · Zbl 0611.10009 · doi:10.1017/S0305004100066068
[11] Granville, Andrew, Large character sums, J. Amer. Math. Soc., 365-397 (2001) · Zbl 0983.11053 · doi:10.1090/S0894-0347-00-00357-X
[12] Granville, Andrew, Large character sums: pretentious characters and the P\'{o}lya-Vinogradov theorem, J. Amer. Math. Soc., 357-384 (2007) · Zbl 1210.11090 · doi:10.1090/S0894-0347-06-00536-4
[13] Granville, Andrew, Large character sums: Burgess’s theorem and zeros of \(L\)-functions, J. Eur. Math. Soc. (JEMS), 1-14 (2018) · Zbl 1444.11177 · doi:10.4171/JEMS/757
[14] A. Harper, A note on character sums over short moving intervals, Preprint, 2203.09448, 2022.
[15] Konyagin, Sergei V., Quadratic non-residues in short intervals, Proc. Amer. Math. Soc., 4261-4269 (2015) · Zbl 1378.11012 · doi:10.1090/S0002-9939-2015-12584-1
[16] Koukoulopoulos, Dimitris, The distribution of prime numbers, Graduate Studies in Mathematics, xii + 356 pp. ([2019] ©2019), American Mathematical Society, Providence, RI · Zbl 1468.11001 · doi:10.1090/gsm/203
[17] Lamzouri, Youness, Randomness of character sums modulo \(m\), J. Number Theory, 2779-2792 (2012) · Zbl 1320.11076 · doi:10.1016/j.jnt.2012.05.024
[18] Lamzouri, Youness, The distribution of short character sums, Math. Proc. Cambridge Philos. Soc., 207-218 (2013) · Zbl 1325.11082 · doi:10.1017/S0305004113000170
[19] Lamzouri, Youness, Conditional bounds for the least quadratic non-residue and related problems, Math. Comp., 2391-2412 (2015) · Zbl 1326.11058 · doi:10.1090/S0025-5718-2015-02925-1
[20] Linnik, U. V., A remark on the least quadratic non-residue, C. R. (Doklady) Acad. Sci. URSS (N.S.), 119-120 (1942) · Zbl 0063.03570
[21] G. P\'olya, \"Uber die verteilung der quadratischen Reste und Nichtrest, Nachr. K. Ges. Wiss. G\"ottingen (1918), 21-29. · JFM 46.0265.02
[22] Prachar, Karl, \"{U}ber die kleinste quadratfreie Zahl einer arithmetischen Reihe, Monatsh. Math., 173-176 (1958) · Zbl 0083.03704 · doi:10.1007/BF01301288
[23] Shohat, J. A., The Problem of Moments, American Mathematical Society Mathematical Surveys, Vol. I, xiv+140 pp. (1943), American Mathematical Society, New York · Zbl 0063.06973
[24] I. M. Vinogradov, Sur la distribution des r\'esidus et des non-r\'esidus des puissances, J. Phys. Math. Soc. Perm. 1 (1919), 94-98.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.