×

Weak discrete maximum principle of isoparametric finite element methods in curvilinear polyhedra. (English) Zbl 1527.65128

Summary: The weak maximum principle of the isoparametric finite element method is proved for the Poisson equation under the Dirichlet boundary condition in a (possibly concave) curvilinear polyhedral domain with edge openings smaller than \(\pi\), which include smooth domains and smooth deformations of convex polyhedra. The proof relies on the analysis of a dual elliptic problem with a discontinuous coefficient matrix arising from the isoparametric finite elements. Therefore, the standard \(H^2\) elliptic regularity which is required in the proof of the weak maximum principle in the literature does not hold for this dual problem. To overcome this difficulty, we have decomposed the solution into a smooth part and a nonsmooth part, and estimated the two parts by \(H^2\) and \(W^{1, p}\) estimates, respectively.
As an application of the weak maximum principle, we have proved a maximum-norm best approximation property of the isoparametric finite element method for the Poisson equation in a curvilinear polyhedron. The proof contains non-trivial modifications of Schatz’s argument due to the nonconformity of the iso-parametric finite elements, which requires us to construct a globally smooth flow map which maps the curvilinear polyhedron to a perturbed larger domain on which we can establish the \(W^{1, \infty}\) regularity estimate of the Poisson equation uniformly with respect to the perturbation.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35B65 Smoothness and regularity of solutions to PDEs
35B20 Perturbations in context of PDEs

References:

[1] Apel, Thomas, \(L^\infty \)-error estimates on graded meshes with application to optimal control, SIAM J. Control Optim., 1771-1796 (2009) · Zbl 1282.49020 · doi:10.1137/080731724
[2] Apel, Thomas, Error estimates for the postprocessing approach applied to Neumann boundary control problems in polyhedral domains, IMA J. Numer. Anal., 1984-2025 (2018) · Zbl 1477.49046 · doi:10.1093/imanum/drx059
[3] C. Bacuta, A. L. Mazzucato, V. Nistor, and L. Zikatanov, Interface and mixed boundary value problems on \(n\)-dimensional polyhedral domains, Indiana Univ. Math. J. 32 (1983),no. 6, 801-808. · Zbl 1207.35117
[4] Bakaev, Nikolai Yu., Maximum-norm estimates for resolvents of elliptic finite element operators, Math. Comp., 1597-1610 (2003) · Zbl 1028.65113 · doi:10.1090/S0025-5718-02-01488-6
[5] Behringer, Niklas, Global and local pointwise error estimates for finite element approximations to the Stokes problem on convex polyhedra, SIAM J. Numer. Anal., 1531-1555 (2020) · Zbl 1440.65180 · doi:10.1137/19M1274456
[6] Brandts, Jan, On nonobtuse simplicial partitions, SIAM Rev., 317-335 (2009) · Zbl 1172.51012 · doi:10.1137/060669073
[7] Brenner, Susanne C., The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, xviii+397 pp. (2008), Springer, New York · Zbl 1135.65042 · doi:10.1007/978-0-387-75934-0
[8] Calder\'{o}n, Calixto P., Interpolation of Sobolev spaces. The real method, Indiana Univ. Math. J., 801-808 (1983) · Zbl 0535.46048 · doi:10.1512/iumj.1983.32.32054
[9] Ciarlet, Philippe G., Discrete maximum principle for finite-difference operators, Aequationes Math., 338-352 (1970) · Zbl 0198.14601 · doi:10.1007/BF01844166
[10] P. G. Ciarlet, The FEM for Elliptic Problems, SIAM, 2002.
[11] Ciarlet, P. G., Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg., 17-31 (1973) · Zbl 0251.65069 · doi:10.1016/0045-7825(73)90019-4
[12] Dauge, Monique, Neumann and mixed problems on curvilinear polyhedra, Integral Equations Operator Theory, 227-261 (1992) · Zbl 0767.46026 · doi:10.1007/BF01204238
[13] Demlow, Alan, Localized pointwise a posteriori error estimates for gradients of piecewise linear finite element approximations to second-order quadilinear elliptic problems, SIAM J. Numer. Anal., 494-514 (2006) · Zbl 1116.65114 · doi:10.1137/040610064
[14] D\"{o}rich, Benjamin, Optimal \(W^{1,\infty }\)-estimates for an isoparametric finite element discretization of elliptic boundary value problems, Electron. Trans. Numer. Anal., 1-21 (2023) · Zbl 1498.65197 · doi:10.1553/etna\_vol58s1
[15] Frehse, Jens, Asymptotic \(L^{\infty }\)-error estimates for linear finite element approximations of quasilinear boundary value problems, SIAM J. Numer. Anal., 418-431 (1978) · Zbl 0386.65049 · doi:10.1137/0715026
[16] Gao, Huadong, The pointwise stabilities of piecewise linear finite element method on non-obtuse tetrahedral meshes of nonconvex polyhedra, J. Sci. Comput., Paper No. 53, 5 pp. (2021) · Zbl 1465.65135 · doi:10.1007/s10915-021-01465-4
[17] Guzm\'{a}n, J., H\"{o}lder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods, Numer. Math., 221-243 (2009) · Zbl 1165.65068 · doi:10.1007/s00211-009-0213-y
[18] Kashiwabara, Takahito, Stability, analyticity, and maximal regularity for parabolic finite element problems on smooth domains, Math. Comp., 1647-1679 (2020) · Zbl 1436.65139 · doi:10.1090/mcom/3500
[19] Kashiwabara, Takahito, Pointwise error estimates of linear finite element method for Neumann boundary value problems in a smooth domain, Numer. Math., 553-584 (2020) · Zbl 1437.65195 · doi:10.1007/s00211-019-01098-8
[20] Korotov, Sergey, Acute type refinements of tetrahedral partitions of polyhedral domains, SIAM J. Numer. Anal., 724-733 (2001) · Zbl 1069.65017 · doi:10.1137/S003614290037040X
[21] Korotov, Sergey, Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle, Math. Comp., 107-119 (2001) · Zbl 1001.65125 · doi:10.1090/S0025-5718-00-01270-9
[22] Lenoir, M., Optimal isoparametric finite elements and error estimates for domains involving curved boundaries, SIAM J. Numer. Anal., 562-580 (1986) · Zbl 0605.65071 · doi:10.1137/0723036
[23] Leykekhman, Dmitriy, Finite element pointwise results on convex polyhedral domains, SIAM J. Numer. Anal., 561-587 (2016) · Zbl 1335.65093 · doi:10.1137/15M1013912
[24] Leykekhman, Dmitriy, Pointwise best approximation results for Galerkin finite element solutions of parabolic problems, SIAM J. Numer. Anal., 1365-1384 (2016) · Zbl 1382.65319 · doi:10.1137/15M103412X
[25] Leykekhman, Dmitriy, Weak discrete maximum principle of finite element methods in convex polyhedra, Math. Comp., 1-18 (2021) · Zbl 1452.65348 · doi:10.1090/mcom/3560
[26] Li, Buyang, Analyticity, maximal regularity and maximum-norm stability of semi-discrete finite element solutions of parabolic equations in nonconvex polyhedra, Math. Comp., 1-44 (2019) · Zbl 1403.65071 · doi:10.1090/mcom/3316
[27] Li, Buyang, Maximal regularity of multistep fully discrete finite element methods for parabolic equations, IMA J. Numer. Anal., 1700-1734 (2022) · Zbl 07524730 · doi:10.1093/imanum/drab019
[28] Li, Buyang, Maximal \(L^p\) analysis of finite element solutions for parabolic equations with nonsmooth coefficients in convex polyhedra, Math. Comp., 1071-1102 (2017) · Zbl 1359.65206 · doi:10.1090/mcom/3133
[29] Meidner, Dominik, Optimal error estimates for fully discrete Galerkin approximations of semilinear parabolic equations, ESAIM Math. Model. Numer. Anal., 2307-2325 (2018) · Zbl 1412.65152 · doi:10.1051/m2an/2018040
[30] Nitsche, Joachim A., Interior estimates for Ritz-Galerkin methods, Math. Comp., 937-958 (1974) · Zbl 0298.65071 · doi:10.2307/2005356
[31] Ruas Santos, Vitoriano, On the strong maximum principle for some piecewise linear finite element approximate problems of nonpositive type, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 473-491 (1982) · Zbl 0488.65052
[32] Schatz, Alfred H., A weak discrete maximum principle and stability of the finite element method in \(L_{\infty }\) on plane polygonal domains. I, Math. Comp., 77-91 (1980) · Zbl 0425.65060 · doi:10.2307/2006221
[33] Schatz, A. H., Interior maximum norm estimates for finite element methods, Math. Comp., 414-442 (1977) · Zbl 0364.65083 · doi:10.2307/2006424
[34] Schatz, A. H., Maximum norm estimates in the finite element method on plane polygonal domains. I, Math. Comp., 73-109 (1978) · Zbl 0382.65058 · doi:10.2307/2006259
[35] Schatz, A. H., On the quasi-optimality in \(L_{\infty }\) of the \(\dot H^1\)-projection into finite element spaces, Math. Comp., 1-22 (1982) · Zbl 0483.65006 · doi:10.2307/2007461
[36] Vanselow, Reiner, About Delaunay triangulations and discrete maximum principles for the linear conforming FEM applied to the Poisson equation, Appl. Math., 13-28 (2001) · Zbl 1066.65132 · doi:10.1023/A:1013775420323
[37] Wang, Junping, Maximum principles for \(P1\)-conforming finite element approximations of quasi-linear second order elliptic equations, SIAM J. Numer. Anal., 626-642 (2012) · Zbl 1250.65144 · doi:10.1137/110833737
[38] Xu, Jinchao, A monotone finite element scheme for convection-diffusion equations, Math. Comp., 1429-1446 (1999) · Zbl 0931.65111 · doi:10.1090/S0025-5718-99-01148-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.