×

Simultaneous visibility in the integer lattice. (English) Zbl 1527.11074

Two lattice points are said to be visible from one another if there is no lattice point on the open line segment joining them. The classical problem regarding the asymptotic density of the set of lattice points, visible from the origin has been well studied, including results by Dirichlet, Montgomery and Lehmer, the latter of which proved that that the asymptotic density of the set of points of \(\mathbb{N}^k\), visible from the origin, is \(\frac{1}{\zeta(k)}\).
A related problem studied here by the authors is for a given a set \(S\subset \mathbb{Z}^k\), to examine \(V (S)\) the set of points of \(\mathbb{Z}^k\), visible simultaneously from all points of \(S\). Here they define the set \(S\) to be admissible if every two points in \(S\) are mutually visible and consider points in the box \[ B = J_1 \times J_2 \times\ldots\times J_k\subset \mathbb{Z}^k, \] where \(J_i = [M_i, M_i +L_i)\) for some integers \(M_i\) and \(L_i\), for \(1 \leq i \leq k\), with the assumption that \(L_1 \geq \ldots \geq L_k\).
Their main result is an improved upper bound on the error term which says that the number of points of \(B\), visible from \(S\), satisfies, as \(L_k =\min\{L_1, \ldots, L_k\} \rightarrow \infty\), \[ V (S,B) \leq L_1 \cdots L_k\prod_{p\in\mathcal{P}}\left (1-\frac{s(p)}{p^k}\right )+E, \] where \[ E = \begin{cases} O\left (\max\{L_1 \log^{3r}{L_2}, (L_1L_2)^{2/3+\varepsilon}\}\right ), \text{ for all } \varepsilon > 0, \qquad & k=2,\\ O\left (L_1 \ldots L_{k-1}\right ),\qquad & k\geq 3. \end{cases} \] Here \(\mathcal{P}\) is the set of prime numbers, and for \( p\in\mathcal{P}\) \[ \pi_p : \mathbb{Z}^k\to (\mathbb{Z}/p\mathbb{Z})^k, \] denotes the natural projection, with \[s(p) = |\pi_p(S)|.\] In the special case when \(L_1 = L_2 =\dots = L_k = L\), the authors note that \[ V (S,B) \leq L^k\prod_{p\in\mathcal{P}}\left (1-\frac{s(p)}{p^k}\right )+E, \] where \[ E = \begin{cases} O\left (L^{4/3+\varepsilon}\}\right ), \text{ for all } \varepsilon > 0, \qquad & k=2\\ O\left (L^{k-1}\right ),\qquad & k\geq 3. \end{cases} \] They then go on to deduce the Schnirelmann density of the set of visible points from some sets \(S\).

MSC:

11P21 Lattice points in specified regions
11N36 Applications of sieve methods
37A44 Relations between ergodic theory and number theory

References:

[1] Adhikari, S.; Pétermann, Y.-F. S., Lattice points in ellipsoids, Acta Arith., 59, 329-338 (1991) · Zbl 0705.11056
[2] Adhikari, S.; Sankaranarayanan, A., On an error term related to the Jordan totient function \(J_k(n)\), J. Number Theory, 34, 2, 178-188 (1990) · Zbl 0694.10041
[3] Apostol, T. M., Analytic Number Theory (1976), Springer Science & Business Media · Zbl 0335.10001
[4] Baker, R. C., Primitive lattice points in planar domains, Acta Arith., 142, 3, 267-302 (2010) · Zbl 1213.11176
[5] Bárány, I.; Martin, G.; Naslund, E.; Robins, S., Primitive points in rational polygons, Can. Math. Bull., 63, 4, 850-870 (2020) · Zbl 1462.11053
[6] Benkoski, S., The probability that k positive integers are relatively r-prime, J. Number Theory, 8, 2, 218-223 (1976) · Zbl 0326.10005
[7] Brass, P.; Moser, W.; Pach, J., Research Problems in Discrete Geometry (2006), Springer Science & Business Media
[8] Bourgain, J.; Watt, N., Mean square of zeta function, circle problem and divisor problem revisited (2017), arXiv preprint
[9] Chaubey, S.; Tamazyan, A.; Zaharescu, A., Lattice point problems involving index and joint visibility, Proc. Am. Math. Soc., 147, 8, 3273-3288 (2019) · Zbl 1457.11135
[10] Chamizo, F.; Cristóbal, E.; Ubis, A., Visible lattice points in the sphere, J. Number Theory, 126, 2, 200-211 (2007) · Zbl 1132.11051
[11] Collins, G.; Johnson, J., The probability of relative primality of Gaussian integers, (Symbolic and Algebraic Computation. Symbolic and Algebraic Computation, Lecture Notes in Computer Science, vol. 358 (1988), Springer-Verlag: Springer-Verlag New York), 252-258
[12] Corrádi, K.; Kátai, I., A comment on KS Gangadharan’s paper entitled “Two classical lattice point problems”, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl., 17, 89-97 (1967) · Zbl 0163.04103
[13] Eckford, C., Series representations of certain types of arithmetical functions, Osaka Math. J., 13, 1, 209-216 (1961) · Zbl 0101.03704
[14] Eisner, T.; Farkas, B.; Haas, M.; Nagel, R., Operator Theoretic Aspects of Ergodic Theory (2015), Springer: Springer New York · Zbl 1353.37002
[15] Erdős, P.; Shapiro, P., On the changes of sign of a certain error function, Can. J. Math., 3, 375-385 (1951) · Zbl 0044.03903
[16] Furstenberg, H., Recurrence in Ergodic Theory and Combinatorial Number Theory (1981), Princeton University Press: Princeton University Press New Jersey · Zbl 0459.28023
[17] Hafner, J. L., New omega theorems for two classical lattice points problems, Invent. Math., 63, 181-186 (1981) · Zbl 0458.10031
[18] Halberstam, H.; Richert, H., Sieve Methods (1974), Academic Press: Academic Press London, New York · Zbl 0298.10026
[19] Hardy, G. H., On Dirichlet’s divisor problem, Proc. Lond. Math. Soc., 2, 15, 1-25 (1916) · JFM 46.0260.01
[20] Heath-Brown, D. R., Lattice points in the sphere, (Györy, K.; etal., Number Theory in Progress, Proc. Number Theory Conf. Zakopane 1997, vol. 2 (1999)), 883-892 · Zbl 0929.11040
[21] Hensley, D., The number of lattice points within a contour and visible from the origin, Pac. J. Math., 166, 2, 295-304 (1994) · Zbl 0849.11078
[22] Herzog, F.; Stewart, B. M., Patterns of visible and nonvisible lattice points, Am. Math. Mon., 78, 5, 487-496 (1971) · Zbl 0217.03501
[23] Higgins, P.; Hitchin, N., An Introduction to Topological Groups (1974), Cambridge University Press · Zbl 0288.22001
[24] Hulse, T. A.; Kuan, C. I.; Lowry-Duda, D.; Walker, A., Second moments in the generalized Gauss circle problem, Forum Math. Sigma, 6, 1-49 (2018) · Zbl 1414.11119
[25] Huxley, M. N., Exponential sums and lattice points II, Proc. Lond. Math. Soc., 66, 279-301 (1993) · Zbl 0820.11060
[26] Huxley, M. N., Exponential sums and lattice points III, Proc. Lond. Math. Soc., 87, 3, 591-609 (2003) · Zbl 1065.11079
[27] Huxley, M. N.; Nowak, W. G., Primitive lattice points in convex planar domains, Acta Arith., 76, 3, 271-283 (1996) · Zbl 0861.11056
[28] Ivić, A.; Krätzel, E.; Kühleitner, M.; Nowak, W. G., Lattice points in large regions and related arithmetic functions: recent developments in a very classic topic, (Elementare und Analytische Zahlentheorie (2006), Franz Steiner Verlag Stuttgart: Franz Steiner Verlag Stuttgart Stuttgart), 89-128, Publications of the Scientific Society at the Johann Wolfgang Goethe University, Frankfurt am Main. Franz Steiner Verlag Stuttgart, Postfach 10 10 61, 70009 Stuttgart, Germany, 20 · Zbl 1177.11084
[29] Kakutani, S., Notes on infinite product measure spaces, I, Proc. Imp. Acad., 19, 3, 148-151 (1943) · Zbl 0061.09701
[30] Krätzel, E., Analytische Funktionen in der Zahlentheorie, Teubner-Texte zur Mathematik, vol. 139 (2000), B. G. Teubner: B. G. Teubner Stuttgart · Zbl 0962.11001
[31] Kolesnik, G., On the method of exponent pairs, Acta Arith., 45, 2, 115-143 (1985) · Zbl 0571.10036
[32] Landau, E., Über die Anzahl der Gitterpunkte in geweissen Bereichen, Gött. Nachr., 18, 687-770 (1912) · JFM 43.0266.01
[33] Lehmer, D. N., Asymptotic evaluation of certain totient sums, Am. J. Math., 22, 4, 293-335 (1900) · JFM 31.0195.01
[34] Lima, Y., \( \mathbf{Z}^d\)-actions with prescribed topological and ergodic properties, Ergod. Theory Dyn. Syst., 32, 1, 191-209 (2012) · Zbl 1247.37011
[35] Liu, H. Q., On Euler’s function, Proc. R. Soc. Edinb., Sect. A, Math., 146, 4, 769-775 (2016) · Zbl 1403.11063
[36] Liu, K.; Lu, M.; Meng, X., Generalized visibility of lattice points in higher dimensions, J. Number Theory, 241, 314-329 (2022) · Zbl 1512.11069
[37] Maynard, J., Small gaps between primes, Ann. Math., 18, 2, 383-413 (2015) · Zbl 1306.11073
[38] Mertens, F., Ueber einige asymptotische Gesetze der Zahlentheorie, J. Reine Angew. Math., 1874, 77, 289-338 (1874) · JFM 06.0114.02
[39] Montgomery, H. L., Fluctuations in the mean of Euler’s phi function, Proc. Indian Acad. Sci. Math. Sci., 97, 1, 239-245 (1987) · Zbl 0656.10042
[40] Moroz, B. Z., On the number of primitive lattice points in plane domains, Monatshefte Math., 99, 37-42 (1985) · Zbl 0551.10038
[41] W. Moser, J. Pach, Research Problems in Discrete Geometry, Unpublished, 1985.
[42] Murty, M.; Cojocaru, A., An Introduction to Sieve Methods and Their Applications (2006), Cambridge University Press · Zbl 1121.11063
[43] Niven, I.; Zuckerman, H.; Montgomery, L., An Introduction to the Theory of Numbers (1991), John Wiley & Sons · Zbl 0742.11001
[44] Nowak, W. G., An Ω-estimate for the lattice rest of a convex planar domain, Proc. R. Soc. Edinb., Sect. A, Math., 100, 3-4, 295-299 (1985) · Zbl 0582.10033
[45] Nowak, W. G., On the average order of the lattice rest of a convex planar domain, Math. Proc. Camb. Philos. Soc., 98, 1, 1-4 (1985) · Zbl 0552.10032
[46] Nowak, W. G., Primitive lattice points in starlike planar sets, Pac. J. Math., 179, 1, 163-178 (1997) · Zbl 0917.11052
[47] Nowak, W. G., Primitive lattice points inside an ellipse, Czechoslov. Math. J., 55, 519-530 (2005) · Zbl 1081.11064
[48] Nymann, J., On the probability that k positive integers are relatively prime, J. Number Theory, 4, 5, 469-473 (1972) · Zbl 0246.10038
[49] Pétermann, Y.-F. S., Oscillations d’un terme d’erreur lié à la fonction totient de Jordan, J. Théor. Nr. Bordx., 3, 2, 311-335 (1991) · Zbl 0749.11041
[50] Y.-F.S. Pétermann, Personal communication.
[51] Pillai, S. S.; Chowla, S. D., On the error terms in some asymptotic formulae in the theory of numbers (1), J. Lond. Math. Soc., 1, 2, 95-101 (1930) · JFM 56.0889.01
[52] Pollack, P., Bounded gaps between primes with a given primitive root, Algebra Number Theory, 8, 7, 1769-1786 (2014) · Zbl 1392.11073
[53] Rearick, D. F., Some Visibility Problems in the Point Lattices (1960), California Institute of Technology, Doctoral dissertation
[54] Rearick, D., Mutually visible lattice points, Norske Vid. Selsk. Forh., 39, 6, 41-45 (1966) · Zbl 0161.04903
[55] Rumsey, H., Sets of visible points, Duke Math. J., 33, 2, 263-274 (1966) · Zbl 0158.29901
[56] Robin, G., Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction \(\omega(n)\) nombre de diviseurs premiers de n, Acta Arith., 42, 4, 367-389 (1983) · Zbl 0475.10034
[57] Sarma, M. L.N., On the error term in a certain sum, Proc. Indian Acad. Sci. A, 3, 338 (1931) · Zbl 0013.39301
[58] Schnirelmann, L., Über additive Eigenschaften von Zahlen, Math. Ann., 107, 1, 649-690 (1933) · JFM 59.0198.01
[59] Selberg, A., Sieve methods, Proc. Symp. Pure Math., 20, 311-351 (1971) · Zbl 0222.10048
[60] Sierpiński, W., O pewnem zagadnieniu z rachunku funkcyj asymptotycznych, Pr. Mat.-Fiz., 17, 77-118 (1906) · JFM 37.0236.02
[61] Sittinger, B. D., The probability that random algebraic integers are relatively r-prime, J. Number Theory, 130, 1, 164-171 (2010) · Zbl 1262.11089
[62] Soundararajan, K., Omega results for the divisor and circle problems, Int. Math. Res. Notes, 36, 1987-1998 (2003) · Zbl 1130.11329
[63] Sury, B., Bernoulli numbers and the Riemann zeta function, Resonance, 8, 7, 54-61 (2003)
[64] Sylvester, J. J., Sur le nombre de fractions ordinaires inégales qu’on peut exprimer en se servant de chiffres qui n’excèdent pas un nombre donné, CR Acad. Sci. Paris, 96, 409-413 (1883) · JFM 15.0132.01
[65] Sylvester, J. J., On the number of fractions contained in any “Farey series” of which the limiting number is given, Lond. Edinb. Dublin Philos. Mag. J. Sci., 15, 94, 251-257 (1883) · JFM 15.0133.02
[66] Takeda, W., The exact order of the number of lattice points visible from the origin (2016), arXiv preprint
[67] Tsang, K. M., Counting lattice points in the sphere, Bull. Lond. Math. Soc., 32, 6, 679-688 (2000) · Zbl 1025.11033
[68] Vatwani, A., Higher Rank Sieves and Applications (2016), Queen’s University, Doctoral dissertation
[69] Walfisz, A., Über gitterpunkte in vierdimensionalen ellipsoiden, Math. Z., 72, 1, 259-278 (1959) · Zbl 0234.10037
[70] Walfisz, A., Weylsche Exponentialsummen in der neueren Zahlentheorie, Math. Forsch.ber., 15, 231-241 (1963) · Zbl 0146.06003
[71] Wu, J., On the primitive circle problem, Monatshefte Math., 135, 69-81 (2002) · Zbl 0994.11035
[72] Zhai, W., On primitive lattice points in planar domains, Acta Arith., 109, 1-26 (2003) · Zbl 1027.11075
[73] Zhai, W.; Cao, X., On the number of coprime integer pairs within a circle, Acta Arith., 90, 1, 1-16 (1999) · Zbl 0932.11066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.