×

Fluid-filled toroidal membrane in contact with flat elastic substrate. (English) Zbl 1525.74155

Summary: The present study aims to explore the contact mechanics of a fluid-filled toroidal hyperelastic membrane pressed against an elastic substrate. The deformable substrate is modeled as two flat elastic plates which are laterally pressed against the inflated torus. A stack of two bonded annular membranes is considered in the undeformed state, which results in toroidal topology upon internal pressurization. The air-inflated and liquid-filled membrane structure interaction with the elastic plate is studied under two different contact conditions: frictionless and no-slip contact. A variational formulation is adopted to obtain the equations of equilibrium of the membrane, and a numerical solution scheme coupled with an optimization technique is used with incremental step size. The pressing process is assumed to be quasi-static and axisymmetric. Frictionless contact allows the membrane material points to flow freely over the plate, thereby increasing the enclosed volume of the membrane during pressing. However, no-slip contact restricts the material point movement within the contact zone, and thus the volume of the membrane drops during contact. The contact stress generated in the elastic substrate and its indentation increase due to strain-hardening of the membrane. The plate indentation decreases due to increased stiffness, reducing the contact patch area. The force-displacement characteristics show a rapid increase in stiffness with increased plate displacement. Replacing the inflating air with liquid, the force required to maintain the contact is also found to increase for identical indentation levels.

MSC:

74M15 Contact in solid mechanics
74K15 Membranes
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74P99 Optimization problems in solid mechanics
74S99 Numerical and other methods in solid mechanics
Full Text: DOI

References:

[1] Jenkins, CH, Gossamer spacecraft: membrane and inflatable structures technology for space applications (2001), Virginia: American Institute of Aeronautics and Astronautics, Virginia · doi:10.2514/4.866616
[2] Charrier, J., Air-rubber springs: an analysis, Int J Mech Sci, 15, 6, 435-448 (1973) · doi:10.1016/0020-7403(73)90027-1
[3] Oguoma, O.; Baumgarten, J., Contact area of toroidal air springs, Int J Mech Sci, 32, 8, 677-686 (1990) · doi:10.1016/0020-7403(90)90009-8
[4] Mendia-Garcia, I.; Gil-Negrete Laborda, N.; Pradera-Mallabiabarrena, A.; Berg, M., A survey on the modelling of air springs secondary suspension in railway vehicles, Veh Syst Dyn (2020) · doi:10.1080/00423114.2020.1838566
[5] Graczykowski, C., Mathematical models and numerical methods for the simulation of adaptive inflatable structures for impact absorption, Comput Struct, 174, 3-20 (2016) · doi:10.1016/j.compstruc.2015.06.017
[6] Eftaxiopoulos, DA; Atkinson, C., A nonlinear, anisotropic and axisymmetric model for balloon angioplasty, Proc R Soc A Math Phys Eng Sci, 461, 2056, 1097-1128 (2005) · Zbl 1145.92321 · doi:10.1098/rspa.2004.1419
[7] Tang P, Huang D, Wang Y, Gong R, Tang W, Ding Y (2016) Position based balloon angioplasty. In: Proceedings of the 15th ACM SIGGRAPH conference on virtual-reality continuum and its applications in industry, Vol. 1, pp. 391-400. doi:10.1145/3013971.3013996
[8] Srivastava, A.; Tepole, AB; Hui, C-Y, Skin stretching by a balloon tissue expander: interplay between contact mechanics and skin growth, Extreme Mech Lett, 9, 175-187 (2016) · doi:10.1016/j.eml.2016.06.008
[9] Rivera, R.; LoGiudice, J.; Gosain, AK, Tissue expansion in pediatric patients, Clin Plast Surg, 32, 1, 35-44 (2005) · doi:10.1016/j.cps.2004.08.001
[10] Mooney, M., A theory of large elastic deformation, J Appl Phys, 11, 9, 582-592 (1940) · JFM 66.1021.04 · doi:10.1063/1.1712836
[11] Rivlin, R., Large elastic deformations of isotropic materials. i. fundamental concepts, Philos Trans R Soc Lond Ser A Math Phys Sci, 240, 822, 459-490 (1948) · Zbl 0029.32605 · doi:10.1007/978-1-4612-2416-7_5
[12] Rivlin, RS; Saunders, D., Large elastic deformations of isotropic materials vii. experiments on the deformation of rubber, Philos Trans R Soc Lond Ser A Math Phys Sci, 243, 865, 251-288 (1951) · Zbl 0042.42505 · doi:10.1007/978-1-4612-2416-7_12
[13] Adkins, JE; Rivlin, RS, Large elastic deformations of isotropic materials ix. the deformation of thin shells, Philos Trans R Soc Lond Ser A Math Phys Sci, 244, 888, 505-531 (1952) · Zbl 0048.18204 · doi:10.1098/rsta.1952.0013
[14] Klingbell, WW; Shield, RT, Some numerical investigations on empirical strain energy functions in the large axi-symmetric extensions of rubber membranes, Zeitschrift für angewandte Mathematik und Physik ZAMP, 15, 6, 608-629 (1964) · doi:10.1007/BF01595147
[15] Boyce, MC; Arruda, EM, Constitutive models of rubber elasticity: a review, Rubber Chem Technol, 73, 3, 504-523 (2000) · doi:10.5254/1.3547602
[16] Tobajas R, Ibartz E, Gracia L (2016) A comparative study of hyperelastic constitutive models to characterize the behavior of a polymer used in automotive engines. In: Proceedings of the 2nd international electronic conference on materials, vol. 2, pp. 002. doi:10.3390/ecm-2-A002
[17] Ogden, RW, Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids, Proc R Soc Lond A Math Phys Sci, 326, 1567, 565-584 (1972) · Zbl 0257.73034 · doi:10.1098/rspa.1972.0026
[18] Yeoh, O., Hyperelastic material models for finite element analysis of rubber, J Nat Rubber Res, 12, 142-153 (1997)
[19] Rao, M.; Satayanarayana, M., On the behavior of hyperelastic materials, a mooney-rivlin approach, Int J Eng Res Technol, 7, 1-5 (2019)
[20] Bergstrom, JS, Mechanics of solid polymers: theory and computational modeling (2015), Waltham: William Andrew, Waltham
[21] Hart-Smith, L.; Crisp, J., Large elastic deformations of thin rubber membranes, Int J Eng Sci, 5, 1, 1-24 (1967) · Zbl 0151.37002 · doi:10.1016/0020-7225(67)90051-1
[22] Yang, WH; Feng, WW, On axisymmetrical deformations of nonlinear membranes, J Appl Mech, 37, 4, 1002-1011 (1970) · Zbl 0222.73102 · doi:10.1115/1.3408651
[23] Feng, WW; Huang, P., On the inflation of a plane nonlinear membrane, J Appl Mech, 41, 3, 767-771 (1974) · doi:10.1115/1.3423385
[24] Patil, A.; DasGupta, A., Finite inflation of an initially stretched hyperelastic circular membrane, Eur J Mech-A/Solids, 41, 28-36 (2013) · Zbl 1406.74421 · doi:10.1016/j.euromechsol.2013.02.007
[25] Nelder, JA; Mead, R., A simplex method for function minimization, Comput J, 7, 4, 308-313 (1965) · Zbl 0229.65053 · doi:10.1093/COMJNL/7.4.308
[26] Pamplona, D.; Goncalves, P.; Lopes, S., Finite deformations of cylindrical membrane under internal pressure, Int J Mech Sci, 48, 6, 683-696 (2006) · doi:10.1016/j.ijmecsci.2005.12.007
[27] Needleman, A., Inflation of spherical rubber balloons, Int J Solids Struct, 13, 5, 409-421 (1977) · doi:10.1016/0020-7683(77)90036-1
[28] Kydoniefs, A.; Spencer, A., The finite inflation of an elastic torus, Int J Eng Sci, 3, 2, 173-195 (1965) · doi:10.1016/0020-7225(65)90043-1
[29] Kydoniefs, A., The finite inflation of an elastic toroidal membrane, Int J Eng Sci, 5, 6, 477-494 (1967) · doi:10.1016/0020-7225(67)90036-5
[30] Hill, JM, The finite inflation of a thick-walled elastic torus, Q J Mech Appl Math, 33, 4, 471-490 (1980) · Zbl 0473.73023 · doi:10.1093/qjmam/33.4.471
[31] Li, X.; Steigmann, D., Finite deformation of a pressurized toroidal membrane, Int J Non-linear Mech, 30, 4, 583-595 (1995) · Zbl 0836.73035 · doi:10.1016/0020-7462(95)00004-8
[32] Tamadapu, G.; DasGupta, A., Finite inflation analysis of a hyperelastic toroidal membrane of initially circular cross-section, Int J Non-Linear Mech, 49, 31-39 (2013) · doi:10.1016/j.ijnonlinmec.2012.09.008
[33] Roychowdhury, S.; DasGupta, A., Inflating a flat toroidal membrane, Int J Solids Struct, 67, 182-191 (2015) · doi:10.1016/j.ijsolstr.2015.04.019
[34] Feng, WW; Yang, W-H, On the contact problem of an inflated spherical nonlinear membrane, J Appl Mech, 40, 1, 209-214 (1973) · doi:10.1115/1.3422928
[35] Feng, W.; Tielking, J.; Huang, P., The inflation and contact constraint of a rectangular mooney membrane, J Appl Mech, 41, 4, 979-984 (1974) · doi:10.1115/1.3423494
[36] Feng, WW; Huang, P., On the general contact problem of an inflated nonlinear plane membrane, Int J Solids Struct, 11, 4, 437-448 (1975) · Zbl 0297.73050 · doi:10.1016/0020-7683(75)90079-7
[37] Kolesnikov, AM; Shatvorov, NM, Indentation of a circular hyperelastic membrane by a rigid cylinder, Int J Non-Linear Mech, 138, 103836 (2022) · doi:10.1016/j.ijnonlinmec.2021.103836
[38] Pearce, SP; King, JR; Holdsworth, MJ, Axisymmetric indentation of curved elastic membranes by a convex rigid indenter, Int J Non-linear Mech, 46, 9, 1128-1138 (2011) · doi:10.1016/j.ijnonlinmec.2011.04.030
[39] Selvadurai, A., Deflections of a rubber membrane, J Mech Phys Solids, 54, 6, 1093-1119 (2006) · Zbl 1120.74595 · doi:10.1016/j.jmps.2006.01.001
[40] Tielking, JT; Feng, WW, The application of the minimum potential energy principle to nonlinear axisymmetric membrane problems, J Appl Mech, 41, 2, 491-496 (1974) · Zbl 0288.73047 · doi:10.1115/1.3423315
[41] Kumar, N.; DasGupta, A., On the contact problem of an inflated spherical hyperelastic membrane, Int J Non-Linear Mech, 57, 130-139 (2013) · doi:10.1016/j.ijnonlinmec.2013.06.015
[42] Srivastava, A.; Hui, C-Y, Large deformation contact mechanics of long rectangular membranes. i. adhesionless contact, Proc R Soc A Math Phys Eng Sci, 469, 2160, 20130424 (2013) · doi:10.1098/rspa.2013.0424
[43] Srivastava, A.; Hui, C-Y, Large deformation contact mechanics of a pressurized long rectangular membrane. ii. adhesive contact, Proc R Soc A Math Phys Eng Sci, 469, 2160, 20130425 (2013) · doi:10.1098/rspa.2013.0424
[44] Long, R.; Shull, KR; Hui, C-Y, Large deformation adhesive contact mechanics of circular membranes with a flat rigid substrate, J Mech Phys Solids, 58, 9, 1225-1242 (2010) · Zbl 1416.74073 · doi:10.1016/j.jmps.2010.06.007
[45] Patil, A.; DasGupta, A.; Eriksson, A., Contact mechanics of a circular membrane inflated against a deformable substrate, Int J Solids Struct, 67, 250-262 (2015) · doi:10.1016/j.ijsolstr.2015.04.025
[46] Yang, X.; Yu, L.; Long, R., Contact mechanics of inflated circular membrane under large deformation: analytical solutions, Int J Solids Struct, 233, 111222 (2021) · doi:10.1016/j.ijsolstr.2021.111222
[47] Patil, A.; DasGupta, A., Constrained inflation of a stretched hyperelastic membrane inside an elastic cone, Meccanica, 50, 6, 1495-1508 (2015) · Zbl 1329.74163 · doi:10.1007/s11012-015-0102-7
[48] Tamadapu, G.; DasGupta, A., Finite inflation of a hyperelastic toroidal membrane over a cylindrical rim, Int J Solids Struct, 51, 2, 430-439 (2014) · Zbl 1406.74424 · doi:10.1016/j.ijsolstr.2013.10.016
[49] Taber, LA, Nonlinear theory of elasticity: applications in biomechanics (2004), Toh Tuck Link, Singapore: World Scientific, Toh Tuck Link, Singapore · Zbl 1052.74001 · doi:10.1142/5452
[50] Yu, LK; Valanis, K., The inflation of axially symmetric membranes by linearly varying hydrostatic pressure, Trans Soc Rheol, 14, 2, 159-183 (1970) · Zbl 0385.73048 · doi:10.1122/1.549185
[51] Nadler, B., On the contact of a spherical membrane enclosing a fluid with rigid parallel planes, Int J Non-Linear Mech, 45, 3, 294-300 (2010) · doi:10.1016/j.ijnonlinmec.2009.12.001
[52] Zhou, Y.; Nordmark, A.; Eriksson, A., Multi-parametric stability investigation for thin spherical membranes filled with gas and fluid, Int J Non-Linear Mech, 82, 37-48 (2016) · doi:10.1016/j.ijnonlinmec.2016.02.005
[53] Sohail, T.; Nadler, B., On the contact of an inflated spherical membrane-fluid structure with a rigid conical indenter, Acta Mech, 218, 3, 225-235 (2011) · Zbl 1335.74019 · doi:10.1007/s00707-010-0418-2
[54] Patil, A.; Nordmark, A.; Eriksson, A., Free and constrained inflation of a pre-stretched cylindrical membrane, Proc R Soc A Math Phys Eng Sci, 470, 2169, 20140282 (2014) · doi:10.1098/rspa.2014.0282
[55] Ogden, RW, Non-linear elastic deformations (1997), Mineola: Courier Corporation, Mineola
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.