×

On \(q\)-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. (English) Zbl 1525.30005


MSC:

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
30C50 Coefficient problems for univalent and multivalent functions of one complex variable
30D30 Meromorphic functions of one complex variable (general theory)

References:

[1] F, On \(q\)-definite integrals, Q. J. Pure Appl. Math., 41, 193-203 (1910) · JFM 41.0317.04
[2] A, Generalized \(q\)-Baskakov operators, Math. Slovaca, 61, 619-634 (2011) · Zbl 1265.41050
[3] A, On \(q\)-Baskakov type operators, Demonstr. Math., 42, 109-122 (2009) · Zbl 1176.41028
[4] A, On the generalized Picard and Gauss Weierstrass singular integrals, J. Compu. Anal. Appl, 8, 249-261 (2006) · Zbl 1099.41012
[5] G, Geometric and approximation properties of generalized singular integrals, J. Korean Math. Soci., 23, 425-443 (2006) · Zbl 1107.30029
[6] S, Some class of analytic functions related to conic domains, Math. Slovaca, 64, 1183-1196 (2014) · Zbl 1349.30054
[7] H. Aldweby, M. Darus, Some subordination results on \(q\)-analogue of Ruscheweyh differential operator, <i>Abstr. Appl. Anal.</i>, (2014), Article ID 958563. · Zbl 1474.30044
[8] S, New subclass of analytic functions in conical domain associated with Ruscheweyh \(q\)-differential operator, Res. Math., 71, 1345-1357 (2017) · Zbl 1376.30008 · doi:10.1007/s00025-016-0592-1
[9] T. M. Seoudy, M. K. Aouf, Convolution properties for certain classes of analytic functions defined by \(q\)-derivative operator, <i>Abstr. Appl. Anal.</i>, (2014), Article ID 846719. · Zbl 1474.30117
[10] T, Coefficient estimates of new classes of \(q\)-starlike and \(q\)-convex functions of complex order, J. Math. Inequal., 10, 135-145 (2016) · Zbl 1333.30027
[11] C, New subclasses of analytic function associated with \(q\)-difference operator, Eur. J. Pure Appl. Math., 10, 348-362 (2017) · Zbl 1361.30029
[12] S. Kavitha, N. E. Cho, G. Murugusundaramoorthy, <i>On \((p, q)\)-Quantum Calculus Involving Quasi-Subordination, Trend in mathematics, Advance in Algebra and Analysis International Conference on Advance in Mathematical Sciences</i>, Vellore, India, December 2017, Vol. 1,215-223. · Zbl 1502.30049
[13] B, A subordination results for a class of analytic functions defined by \(q\)-differential operator, Ann. Univ. Paedagog. Crac. Stud. Math., 19, 53-64 (2020) · Zbl 1524.30045
[14] B, A study of some families of multivalent q-starlike functions involving higher-order q-derivatives, Mathematics, 8, 1-12 (2020)
[15] H, Fekete-Szego type problems and their applications for a subclass of q-starlike functions with respect to symmetrical points, Mathematics, 8, 1-18 (2020)
[16] M, An upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with k-Fibonacci numbers, Symmetry, 12, 1-17 (2020)
[17] M. G. Khan, B. Ahmad, B. A. Frasin, J. Abdel, On Janowski analytic (p; q)-starlike functions in symmetric circular domain, <i>J. Funct. Spaces</i>, (2020), Article ID 4257907. · Zbl 1451.30032
[18] M, Some Janowski type Harmonic \(q\)-starlike functions associated with symmetric points, Mathematics, 8, Article ID 629 (2020) · doi:10.3390/math8040629
[19] H, Close-to-convexity of a certain family of \(q\)-Mittag-Leffler functions, J. Nonlinear Var. Anal., 1, 61-69 (2017) · Zbl 1400.30035
[20] H, Some general families of \(q\)-starlike functions associated with the Janowski functions, Filomat., 33, 2613-2626 (2019) · Zbl 1513.30098 · doi:10.2298/FIL1909613S
[21] M, Generalization of close to convex functions associated with Janowski functions, Maejo Int. J. Sci. Technol., 14, 141-155 (2020)
[22] L, Some geometric properties of a family of analytic functions involving a generalised \(q\)-operator, Symmetry, 12, 1-11 (2020)
[23] S, Q-Extension of starlike functions subordinated with a trignometric sine function, Mathematics, 8, Article ID 1676 (2020) · doi:10.3390/math8101676
[24] J, Radius of convexity of some subclasses of strongly starlike functions, Zesz. Nauk. Politech. Rzeszowskiej Mat., 19, 101-105 (1996) · Zbl 0880.30014
[25] J, Radius problem in the class \(\mathcal{SL}^{\ast } \), Appl. Math. Comput., 214, 569-573 (2009) · Zbl 1170.30005
[26] S, Applications of certain functions associated with lemniscate Bernoulli, J. Indones. Math. Soc., 18, 93-99 (2012) · Zbl 1283.30025
[27] R, First order differential subordination for functions associated with the lemniscate of Bernoulli, Taiwan. J. Math., 16, 1017-1026 (2012) · Zbl 1246.30034 · doi:10.11650/twjm/1500406676
[28] J, Coefficient estimates in a class of strongly starlike functions, Kyungpook Math. J., 49, 349-353 (2009) · Zbl 1176.30068 · doi:10.5666/KMJ.2009.49.2.349
[29] M; Fekete; G., Eine Bemerkung über ungerade schlichte Funktionen, J. Lond. Math. Soc., 8, 85-89 (1933) · JFM 59.0347.04
[30] A, The Fekete-Szegö inequality for complex parameters, Complex Var. Theory Appl., 7, 149-160 (1986) · Zbl 0553.30002
[31] F, A coefficient inequality for certain classes of analytic functions, Proc. Am. Math. Soc., 20, 8-12 (1969) · Zbl 0165.09102 · doi:10.1090/S0002-9939-1969-0232926-9
[32] W, An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie-Sklodowska, Sect. A., 45, 89-97 (1991) · Zbl 0766.30008
[33] W. Ma, D. Minda, Coefficient inequalities for strongly close-to-convex functions, <i>J. Math. Anal. Appl.</i>, <b>205</b>, 537-553. · Zbl 0871.30022
[34] W, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math., 23, 159-177 (1970) · Zbl 0199.39901 · doi:10.4064/ap-23-2-159-177
[35] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Z. Li, F. Ren, L. Yang, S. Zhang (eds.), <i>Proceeding of the conference on Complex Analysis</i>, (Tianjin, \(1992)\), Int. Press, Cambridge, 1994,157-169. · Zbl 0823.30007
[36] K, q-harmonic mappings for which analytic part is \(q\)-convex functions, Nonlinear Anal. Di. Eqns., 4, 283-293 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.