×

Property \((\omega)\) and its perturbations. (English) Zbl 1524.47027

Summary: A Hilbert space operator \(T\) is said to have property \((\omega_1)\) if \(\sigma_a(T)\backslash\sigma_{aw}(T)\subseteq\pi_{00}(T)\), where \(\sigma_a(T)\) and \(\sigma_{aw}(T)\) denote the approximate point spectrum and the Weyl essential approximate point spectrum of \(T\) respectively, and \(\pi_{00}(T)=\{\lambda\in\mathrm{ iso }\sigma(T)\), \(0<\dim N(T-\lambda I)<\infty\}\). If \(\sigma_a(T)\backslash\sigma_{aw}(T)=\pi_{00}(T)\), we say \(T\) satisfies property \((\omega)\). In this note, we investigate the stability of the property \((\omega_1)\) and the property \((\omega)\) under compact perturbations, and we characterize those operators for which the property \((\omega_1)\) and the property \((\omega)\) are stable under compact perturbations.

MSC:

47B02 Operators on Hilbert spaces (general)
47A53 (Semi-) Fredholm operators; index theories
47A10 Spectrum, resolvent
47A55 Perturbation theory of linear operators
Full Text: DOI

References:

[1] Aiena, P., Peña, P.: Variation on Weyl theorem. J. Math. Anal. Appl. 324, 566–579 (2006) · Zbl 1101.47001 · doi:10.1016/j.jmaa.2005.11.027
[2] Aiena, P.: Property ({\(\omega\)}) and perturbation II. J. Math. Anal. Appl. 342, 830–837 (2008) · Zbl 1171.47010 · doi:10.1016/j.jmaa.2007.12.029
[3] Aiena, P., Biondi, M. T.: Property ({\(\omega\)}) and perturbations. J. Math. Anal. Appl. 336, 683–692 (2007) · Zbl 1182.47012 · doi:10.1016/j.jmaa.2007.02.084
[4] Aiena, P. Biondi, M. T., Villafañe, F.: Property ({\(\omega\)}) and perturbations III. J. Math. Anal. Appl. 353, 205–214 (2009) · Zbl 1171.47011 · doi:10.1016/j.jmaa.2008.11.081
[5] Aiena, P.: Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Publishers, Dordrecht, 2004 · Zbl 1077.47001
[6] Cao, X. H., Guo, M. Z., Meng, B.: Weyl spectra and Weyl’s theorem. J. Math. Anal. Appl. 288, 758–767 (2003) · Zbl 1061.47004 · doi:10.1016/j.jmaa.2003.09.026
[7] Harte, R., Lee, W. Y.: Another note on Weyl’s theorem. Trans. Amer. Math. Soc. 349, 2115–2124 (1997) · Zbl 0873.47001 · doi:10.1090/S0002-9947-97-01881-3
[8] Herrero, D. A., Taylor, T. J., Wang, Z. Y.: Variation of the point spectrum under compact perturbations. Oper. Theory Adv. Appl. 32, 113–158 (1988) · doi:10.1007/978-3-0348-5475-7_9
[9] Herrero, D. A.: Economical compact perturbations, II, Filling in the holes. J. Operator Theory, 19, 25–42 (1988) · Zbl 0673.47014
[10] Herrero, D. A.: Approximation of Hilbert Space Operators, Longman Scientific and Technical, Harlow, 1989 · Zbl 0654.46063
[11] Ji, Y. Q.: Quasitriangular+small compact=strongly irreducible. Trans. Amer. Math. Soc. 351, 4657–4673 (1999) · Zbl 0931.47018 · doi:10.1090/S0002-9947-99-02307-7
[12] Laursen, K. B., Neumann, M. M.: An Introduction to Local Spectral Theorey, Oxford University Press, New York, 2000 · Zbl 0957.47004
[13] Oberai, K. K.: On the Weyl spectrum, II. Illinois J. Math. 21, 84–90 (1977) · Zbl 0358.47004
[14] Rakočeviĉ, V.: Operators obeying a-Weyl’s theorem. Rev. Roumaine Math. Pures Appl. 34, 915–919 (1989) · Zbl 0686.47005
[15] Rakočeviĉ, V.: On a class of operators. Mat. Vesnik, 37, 423–426 (1985) · Zbl 0596.47001
[16] Weyl, H.: Über beschränkte quadratische Formen, deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo, 27, 373–392 (1909) · JFM 40.0395.01 · doi:10.1007/BF03019655
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.