×

Weyl-type bounds for twisted \(\mathrm{GL}(2)\) short character sums. (English) Zbl 1524.11112

Summary: Let \(f\) be a Hecke-Maass or holomorphic primitive cusp form of full level for \(\mathrm{SL}(2,\mathbb{Z})\) with normalized Fourier coefficients \(\lambda_f (n)\). Let \(\chi\) be a primitive Dirichlet character of modulus \(p\), a prime. In this article, we shorten the range of cancellation for \(N\) in the twisted \(\mathrm{GL}(2)\) short character sum. Here, we consider the problem of cancellation in short character sum of the form \[ S_{f,\chi} (N):= \sum\limits_{n \in\mathbb{Z}} \lambda_f (n)\chi (n)W\Big( \frac{n}{N}\Big). \] We show that, for \(0<\theta < \frac{1}{10}\), \[ S_{f,\chi} (N) \ll_{f,\epsilon}N^{3/4 + \theta /2}p^{1/6}(pN)^{\epsilon} + N^{1-\theta}(pN)^{\epsilon}, \] which is non-trivial if \(N \geq p^{2/3 + \alpha + \epsilon}\) where \(\alpha = = \frac{4\theta}{1-6\theta}\). Previously, such a bound was known for \(N \geq p^{3/4 +\epsilon}\).

MSC:

11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations
11F30 Fourier coefficients of automorphic forms
11F55 Other groups and their modular and automorphic forms (several variables)
11M41 Other Dirichlet series and zeta functions

References:

[1] Aggarwal, K.; Holowinsky, R.; Lin, Y.; Sun, Q., The Burgess bound via a trivial delta method, Ramanujan J., 53, 1, 49-54 (2020) · Zbl 1469.11123 · doi:10.1007/s11139-020-00258-x
[2] Barban, MB; Linnik, YuV; Tshudakov, NG, On prime numbers in an arithmetic progression with a prime-power difference, Acta Arith., 9, 375-390 (1964) · Zbl 0127.26901 · doi:10.4064/aa-9-4-375-390
[3] Blomer, V., Harcos, G.: Hybrid bounds for twisted L-functions. J. Reine Angew. Math. 621, 53-79 (2008). Addendum: Hybrid bounds for twisted L-functions. J. Reine Angew. Math. 694, 241-244 (2014) · Zbl 1296.11047
[4] Blomer, V.; Milicévić, D., \(p\)-adic analytic twists and strong subconvexity, Ann. Sci. Ec. Norm. Super. (4), 48, 3, 561-605 (2015) · Zbl 1401.11095 · doi:10.24033/asens.2252
[5] Blomer, V.; Harcos, G.; Michel, P., A Burgess-like subconvex bound for twisted L-functions. Appendix 2 by Z. Mao, Forum Math., 19, 1, 61-105 (2007) · Zbl 1168.11014 · doi:10.1515/FORUM.2007.003
[6] Burgess, DA, On character sums and L-series. II, Proc. Lond. Math. Soc. (3), 13, 524-536 (1963) · Zbl 0123.04404 · doi:10.1112/plms/s3-13.1.524
[7] Bykovskii, V.A.: A trace formula for the scalar product of Hecke series and its applications. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 226, Anal. Teor. Chisel i Teor. Funktsii. 13, 14-36, 235-236 (1996). https://rdcu.be/cOwJl · Zbl 0898.11017
[8] Conrey, JB; Iwaniec, H., The cubic moment of central values of automorphic L-functions, Ann. Math. (2), 151, 3, 1175-1216 (2000) · Zbl 0973.11056 · doi:10.2307/121132
[9] Deligne, P., La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math., 43, 273-307 (1974) · Zbl 0287.14001 · doi:10.1007/BF02684373
[10] Deligne, P.; Serre, J-P, Formes modulaires de poids \(1\), Ann. Sci. École Norm. Sup., 4, 7, 507-530 (1975) · Zbl 0321.10026
[11] Fouvry, É.; Kowalski, E.; Michel, P., Algebraic twists of modular forms and Hecke orbits, Geom. Funct. Anal., 25, 2, 580-657 (2015) · Zbl 1344.11036 · doi:10.1007/s00039-015-0310-2
[12] Heath-Brown, DR, Hybrid bounds for Dirichlet L-functions, Invent. Math., 47, 2, 149-170 (1978) · Zbl 0362.10035 · doi:10.1007/BF01578069
[13] Ivić, A., On sums of Hecke series in short intervals, J. Théor. Nombres Bordeaux, 13, 2, 453-468 (2001) · Zbl 0994.11020 · doi:10.5802/jtnb.333
[14] Jutila, M.: Transformations of exponential sums. In: Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori 1989), pp. 263-270. University of Salerno, Salerno (1992) · Zbl 0794.11033
[15] Jutila, M., The additive divisor problem and its analogs for Fourier coefficients of cusp forms. I, Math. Z., 233, 435-461 (1996) · Zbl 0865.11062 · doi:10.1007/BF02621609
[16] Jutila, M., The additive divisor problem and its analogs for Fourier coefficients of cusp forms. II, Math. Z., 225, 625-637 (1997) · Zbl 0919.11059 · doi:10.1007/PL00004323
[17] Meurman, T., On exponential sums involving the Fourier coefficients of Maass wave forms, J. Reine Angew. Math., 384, 192-207 (1988) · Zbl 0627.10017
[18] Milicévić, D., Sub-Weyl subconvexity for Dirichlet L-functions to prime power moduli, Compos. Math., 152, 4, 825-875 (2016) · doi:10.1112/S0010437X15007381
[19] Munshi, R., The circle method and bounds for \(L\)-functions. I, Math. Ann., 358, 389-401 (2014) · Zbl 1312.11037 · doi:10.1007/s00208-013-0968-4
[20] Munshi, R.: A note on Burgess bound. In: Geometry, Algebra, Number Theory, and Their Information Technology Applications. Springer Proceedings in Mathematics and Statistics, vol. 251, pp. 273-289. Springer, Cham (2018) · Zbl 1475.11091
[21] Munshi, R.; Singh, SK, Weyl bound for \(p\)-power twist of \(GL(2)L\)-functions, Algebra Number Theory, 13, 6, 1395-1413 (2019) · Zbl 1461.11077 · doi:10.2140/ant.2019.13.1395
[22] Nelson, P.: Bounds for standard \(L\)-functions. arXiv e-prints (2021). arXiv:2109.15230
[23] Petrow, I.; Young, M., A generalized cubic moment and the Petersson formula for newforms, Math. Ann., 373, 1-2, 287-353 (2019) · Zbl 1446.11069 · doi:10.1007/s00208-018-1745-1
[24] Petrow, I.; Young, M., The Weyl bound for Dirichlet \(L\)-functions of cube-free conductor, Ann. Math., 192, 2, 437-486 (2020) · Zbl 1460.11111 · doi:10.4007/annals.2020.192.2.3
[25] Wu, H., Burgess-like subconvex bounds for \(GL(2)\times GL(1)\), Geom. Funct. Anal., 24, 3, 968-1036 (2014) · Zbl 1376.11037 · doi:10.1007/s00039-014-0277-4
[26] Wu, H., Burgess-like subconvexity for \(GL(1)\), Compos. Math., 155, 8, 1457-1499 (2019) · Zbl 1471.11162 · doi:10.1112/S0010437X19007309
[27] Young, M., Weyl-type hybrid subconvexity bounds for twisted L-functions and Heegner points on shrinking sets, J. Eur. Math. Soc. (JEMS), 19, 5, 1545-1576 (2017) · Zbl 1430.11067 · doi:10.4171/JEMS/699
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.