×

Holographic two-point functions in a disorder system. (English) Zbl 1523.81146

Summary: We study the holographic dual of two-point correlation functions for nonconformal field theories. We first take into account a Lifshitz geometry as the dual of a Lifshitz field theory which may appear at a critical or IR fixed point. We explicitly show the holographic relation between a Lifshitz geometry and a Lifshitz field theory by calculating two-point correlators and equation of state parameter on both sides. We also investigate a disorder deformation, which allows a UV conformal field theory to flow into a new IR Lifshitz field theory. In this deformed theory, we investigate an anomalous dimension representing the change of an operator’s scaling dimension along the RG flow.

MSC:

81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
81V05 Strong interaction, including quantum chromodynamics
81T17 Renormalization group methods applied to problems in quantum field theory
62H20 Measures of association (correlation, canonical correlation, etc.)
47H10 Fixed-point theorems
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
14D15 Formal methods and deformations in algebraic geometry
81T50 Anomalies in quantum field theory

References:

[1] Maldacena, J. M., Int. J. Theor. Phys.. Int. J. Theor. Phys., Adv. Theor. Math. Phys., 2, 231 (1998) · Zbl 0914.53047
[2] Gubser, S. S.; Klebanov, I. R.; Polyakov, A. M., Phys. Lett. B, 428, 105 (1998) · Zbl 1355.81126
[3] Witten, E., Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048
[4] Witten, E., Adv. Theor. Math. Phys., 2, 505 (1998) · Zbl 1057.81550
[5] Maldacena, J. M., Phys. Rev. Lett., 80, 4859 (1998) · Zbl 0947.81128
[6] Rey, S.-J.; Theisen, S.; Yee, J.-T., Nucl. Phys. B, 527, 171 (1998) · Zbl 0956.83059
[7] Park, C., Phys. Rev. D, 81, Article 045009 pp. (2010)
[8] Ryu, S.; Takayanagi, T., Phys. Rev. Lett., 96, Article 181602 pp. (2006) · Zbl 1228.83110
[9] Ryu, S.; Takayanagi, T., J. High Energy Phys., 08, Article 045 pp. (2006)
[10] Myers, R. C.; Singh, A., J. High Energy Phys., 04, Article 122 pp. (2012)
[11] Blanco, D. D.; Casini, H.; Hung, L.-Y.; Myers, R. C., J. High Energy Phys., 08, Article 060 pp. (2013) · Zbl 1342.83128
[12] Wong, G.; Klich, I.; Pando Zayas, L. A.; Vaman, D., J. High Energy Phys., 12, Article 020 pp. (2013)
[13] Bhattacharya, J.; Nozaki, M.; Takayanagi, T.; Ugajin, T., Phys. Rev. Lett., 110, Article 091602 pp. (2013)
[14] Momeni, D.; Raza, M.; Gholizade, H.; Myrzakulov, R., Int. J. Theor. Phys., 55, 4751 (2016) · Zbl 1358.81144
[15] Fischler, W.; Kundu, S., J. High Energy Phys., 05, Article 098 pp. (2013)
[16] Kim, K.-S.; Park, C., Phys. Rev. D, 95, Article 106007 pp. (2017)
[17] Park, C., Phys. Rev. D, 92, Article 126013 pp. (2015)
[18] Susskind, L.; Witten, E. (1998)
[19] Solodukhin, S. N., Nucl. Phys. B, 539, 403 (1999) · Zbl 0949.81026
[20] D’Hoker, E.; Freedman, D. Z.; Skiba, W., Phys. Rev. D, 59, Article 045008 pp. (1999)
[21] Liu, H.; Tseytlin, A. A., Phys. Rev. D, 59, Article 086002 pp. (1999)
[22] Balasubramanian, V.; Ross, S. F., Phys. Rev. D, 61, Article 044007 pp. (2000)
[23] Louko, J.; Marolf, D.; Ross, S. F., Phys. Rev. D, 62, Article 044041 pp. (2000)
[24] Kraus, P.; Ooguri, H.; Shenker, S., Phys. Rev. D, 67, Article 124022 pp. (2003)
[25] Fidkowski, L.; Hubeny, V.; Kleban, M.; Shenker, S., J. High Energy Phys., 02, Article 014 pp. (2004)
[26] Park, C.; Lee, J. H., J. High Energy Phys., 02, Article 135 pp. (2021)
[27] Rodriguez-Gomez, D.; Russo, J. G., J. High Energy Phys., 06, Article 048 pp. (2021) · Zbl 1466.83057
[28] Balasubramanian, K.; McGreevy, J., Phys. Rev. Lett., 101, Article 061601 pp. (2008) · Zbl 1228.81247
[29] Goldberger, W. D., J. High Energy Phys., 03, Article 069 pp. (2009)
[30] Adams, A.; Balasubramanian, K.; McGreevy, J., J. High Energy Phys., 11, Article 059 pp. (2008)
[31] Maldacena, J.; Martelli, D.; Tachikawa, Y., J. High Energy Phys., 10, Article 072 pp. (2008) · Zbl 1245.81200
[32] Minic, D.; Pleimling, M., Phys. Rev. E, 78, Article 061108 pp. (2008)
[33] Kovtun, P.; Nickel, D., Phys. Rev. Lett., 102, Article 011602 pp. (2009)
[34] Lee, S.-S., Phys. Rev. D, 79, Article 086006 pp. (2009)
[35] Lin, F.-L.; Wu, S.-Y., Phys. Lett. B, 679, 65 (2009)
[36] Mazzucato, L.; Oz, Y.; Theisen, S., J. High Energy Phys., 04, Article 073 pp. (2009)
[37] Rangamani, M.; Ross, S. F.; Son, D. T.; Thompson, E. G., J. High Energy Phys., 01, Article 075 pp. (2009) · Zbl 1243.81179
[38] Akhavan, A.; Alishahiha, M.; Davody, A.; Vahedi, A., J. High Energy Phys., 03, Article 053 pp. (2009)
[39] Kachru, S.; Liu, X.; Mulligan, M., Phys. Rev. D, 78, Article 106005 pp. (2008)
[40] Taylor, M. (2008)
[41] Keranen, V.; Thorlacius, L., Class. Quantum Gravity, 29, Article 194009 pp. (2012) · Zbl 1254.83036
[42] Keranen, V.; Sybesma, W.; Szepietowski, P.; Thorlacius, L., J. High Energy Phys., 05, Article 033 pp. (2017) · Zbl 1380.81334
[43] Kord Zangeneh, M.; Wang, B.; Sheykhi, A.; Tang, Z. Y., Phys. Lett. B, 771, 257 (2017) · Zbl 1372.83046
[44] Park, C., Adv. High Energy Phys., 2014, Article 917632 pp. (2014) · Zbl 1425.83077
[45] Park, C., Phys. Rev. D, 89, Article 066003 pp. (2014)
[46] Park, C., Int. J. Mod. Phys. A, 29, Article 1430049 pp. (2014) · Zbl 1301.70022
[47] Park, C., Phys. Rev. D, 105, Article 046004 pp. (2022)
[48] Hartnoll, S. A.; Santos, J. E., Phys. Rev. Lett., 112, Article 231601 pp. (2014)
[49] Narayanan, R.; Park, C.; Zhang, Y.-L., Phys. Rev. D, 99, Article 046019 pp. (2019)
[50] Park, C., Adv. High Energy Phys., 2013, Article 389541 pp. (2013) · Zbl 1328.81185
[51] Arean, D.; Farahi, A.; Pando Zayas, L. A.; Landea, I. S.; Scardicchio, A., Phys. Rev. D, 89, Article 106003 pp. (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.