×

Multiplicity of positive solution for Schrödinger-Poisson system with \(p\)-Laplacian. (English) Zbl 1523.35024

Summary: In this paper, we consider the positive solutions for a Schrödinger-Poisson system containing p-Laplacian and Poisson equation. With a local condition on the potential, by using penalization method, Nehari manifold and Ljusternik-Schnirelmann category theory, the multiplicity and concentration of solutions are obtained.

MSC:

35B25 Singular perturbations in context of PDEs
35B09 Positive solutions to PDEs
35J47 Second-order elliptic systems
35J62 Quasilinear elliptic equations
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
Full Text: DOI

References:

[1] Adams, R. A., Sobolev Spaces, 65 (1975), Academic Press: Academic Press, New York/London · Zbl 0314.46030
[2] Alves, C. O.; Figueiredo, G. M., Multiplicity and concentration of positive solutions for a class of quasilinear problems, Adv. Nonlinear Stud, 11, 2, 265-294 (2011) · Zbl 1231.35006
[3] Ambrosetti, A.; Ruiz, D., Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math, 10, 3, 391-404 (2008) · Zbl 1188.35171
[4] Benci, V.; Fortunato, D., An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal, 11, 2, 283-293 (1998) · Zbl 0926.35125
[5] Benci, V.; Fortunato, D., Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys, 14, 4, 409-420 (2002) · Zbl 1037.35075
[6] Benguria, R.; Brézis, H.; Lieb, E. H., The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Commun. Math. Phys, 79, 167-180 (1981) · Zbl 0478.49035
[7] Boccardo, L.; Murat, F., Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal, 19, 6, 581-597 (1992) · Zbl 0783.35020
[8] Bonheure, D.; Cingolani, S.; Silvia, S., Concentration phenomena for the Schrödinger-Poisson system in ℝ^2, Discrete Contin. Dyn. Syst. Ser. S, 14, 5, 1631-1648 (2021) · Zbl 1480.35153
[9] Catto, I.; Lions, P. L., Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. I. A necessary and sufficient condition for the stability of general molecular system, Commun. Partial Differ. Equ, 17, 1051-1110 (1992) · Zbl 0767.35065
[10] del Pino, M.; Felmer, P., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4, 2, 121-137 (1996) · Zbl 0844.35032
[11] Damascelli, L., Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonity results, Annales Institut Henri Poincare Nonlinear Analysis, 15, 4, 493-516 (1998) · Zbl 0911.35009
[12] Du, Y.; Su, J. B.; Wang, C., The Schrödinger-Poisson system with p-Laplacian, Appl. Math. Lett, 120, 107286 (2021) · Zbl 1479.35335
[13] Du, Y.; Su, J. B.; Wang, C., On a quasilinear Schrödinger-Poisson system, J. Math. Anal. Appl, 505, 1, 125446 (2022) · Zbl 1479.35336
[14] Ekeland, I., On the variational principle, J. Math. Anal. Appl, 47, 324-353 (1974) · Zbl 0286.49015
[15] Feng, X. J., Existence and concentration of ground state solutions for doubly critical Schrödinger-Poisson-type systems, Z. Angew. Math. Phys, 71, 5, 154 (2020) · Zbl 1448.35164
[16] He, X. M., Multiplicity and concentration of positive solutions for the Schrödinger-Poisson equations, Z. Angew. Math. Phys, 62, 5, 869-889 (2011) · Zbl 1258.35170
[17] He, X. M.; Zou, W. M., Multiplicity of concentrating positive solutions for Schrödinger-Poisson equations with critical growth, Nonlinear Anal, 170, 142-170 (2018) · Zbl 1388.35017
[18] Kong, L.Z. and Chen, H.B., Semiclassical solutions for critical Schrödinger-Poisson systems involving multiple competing potentials, ArXiv: 2012.08978.
[19] Li, G. B.; Yan, S. S., Eigenvalue problems for quasilinear elliptic equations on ℝ^N, Comm. Partial Differential Equations, 14, 8-9, 1291-1314 (1989) · Zbl 0692.35045
[20] Lieb, E.; Loss, M., Analysis, 14 (2001), AMS: AMS, Providence, Rhode Island · Zbl 0966.26002
[21] Lions, P. L., The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 4, 223-283 (1984) · Zbl 0704.49004
[22] Lions, P. L., Solutions of Hartree-Fock equations for Coulomb systems, Commun. Math. Phys, 109, 33-97 (1987) · Zbl 0618.35111
[23] Liu, J. J.; Ji, C., Concentration results for a magnetic Schrödinger-Poisson system with critical growth, Adv. Nonlinear Anal, 10, 1, 775-798 (2021) · Zbl 1467.35135
[24] Liu, Y. L.; Li, X.; Ji, C., Multiplicity of concentrating solutions for a class of magnetic Schrödinger-Poisson type equation, Adv. Nonlinear Anal, 10, 1, 131-151 (2021) · Zbl 1440.35138
[25] Ma, Y. W.; Ji, C., Existence of Multi-bump Solutions for the Magnetic Schrödinger-Poisson System in ℝ^3, J. Geom. Anal, 31, 11, 10886-10914 (2021) · Zbl 1483.35091
[26] Mercuri, C.; Moroz, V.; Van Schaftingen, J., Groundstates and radial solutions to nonlinear Schrödinger-Poisson-Slater equations at the critical frequency, Calc. Var. Partial Differential Equations, 55, 6, 146 (2016) · Zbl 1406.35365
[27] Moser, J., A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math, 13, 457-468 (1960) · Zbl 0111.09301
[28] Ruiz, D., The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal, 237, 2, 655-674 (2006) · Zbl 1136.35037
[29] Ruiz, D.; Vaira, G., Cluster solutions for the Schrödinger-Poinsson-Slater problem around a local minimum of the potential, Rev. Mat. Iberoamericana, 27, 1, 253-271 (2011) · Zbl 1216.35024
[30] Szulkin, A.; Weth, T.; Gao, D. Y.; Montreanu, D., Handbook of Nonconvex Analysis and Applications, The method of Nehari manifold, 597-632 (2010), International Press: International Press, Boston · Zbl 1218.58010
[31] Trudinger, N. S., On Harnack type inequalities and their application to quasilinear elliptic equations, Commun. Pure Appl. Math, 20, 721-747 (1967) · Zbl 0153.42703
[32] Zhao, L. G.; Liu, H. D.; Zhao, F. K., Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Differential Equations, 255, 1, 1-23 (2013) · Zbl 1286.35103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.