×

Derangements and the \(p\)-adic incomplete gamma function. (English) Zbl 1523.33009

For a field \(K\) of characteristic 0 the map \[ XK[[X]] \longrightarrow 1 +XK[[X]], g \mapsto h :=\exp (g) \] defines an isomorphism of groups, additive resp. multiplicative. The central theorem of the article relates, in the case \(K=\mathbb{Q}_p\) with \(p \ge 3\), the coefficient sequence \(f(n)\) of the series \[ h= 1+\sum_{n=1}^\infty f(n)\frac{X^n}{n!} \] to the coefficients \(m_k\) of \[ g=\sum_{k=1}^\infty m_k \frac{X^k}{k} \] as follows: Assume that \(m_k \in \mathbb{Z}_p\) for \(k \ge 2\). Then the function \[ f: \mathbb{N} \longrightarrow \mathbb{Q}_p, n \mapsto f(n), \] is \(p\)-adically continuous, i.e., extends to a continuous function \(\hat f: \mathbb{Z}_p \longrightarrow \mathbb{Q}_p\) if and only if \(|m_1-m_p|_p <1\).
A series of examples is discussed, in particular functions counting the number of suitable permutations, derangemants and arrangemants, in the symmetric group on \(n\) letters. They are related to the values of the “incomplete \(\Gamma\)-function” \(\Gamma (n,r)\) for \(n, r \in \mathbb{N}\). That function admits a \(p\)-adic interpolation \[ \Gamma_p: \mathbb{Z}_p \times 1 + p\mathbb{Z}_p \longrightarrow \mathbb{Z}_p, \] which is described by an explicit formula.

MSC:

33E50 Special functions in characteristic \(p\) (gamma functions, etc.)
11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.)
33B20 Incomplete beta and gamma functions (error functions, probability integral, Fresnel integrals)

Software:

DLMF

References:

[1] Adams, William W., Transcendental numbers in the \(P\)-adic domain, Amer. J. Math., 279-308 (1966) · Zbl 0144.29301 · doi:10.2307/2373193
[2] Amice, Yvette, Interpolation \(p\)-adique, Bull. Soc. Math. France, 117-180 (1964) · Zbl 0158.30203
[3] Assaf, Sami H., Cyclic derangements, Electron. J. Combin., Research Paper 163, 14 pp. (2010) · Zbl 1204.05012
[4] D. Barsky, Analyse \(p\)-adique et suites classiques de nombres, S\'eminaire Lotharingien de combinatoire, 1981. · Zbl 0977.12500
[5] Bergeron, F., Combinatorial species and tree-like structures, Encyclopedia of Mathematics and its Applications, xx+457 pp. (1998), Cambridge University Press, Cambridge · Zbl 0888.05001
[6] Chowla, S., The solutions of \(x^d=1\) in symmetric groups, Norske Vid. Selsk. Forh., Trondheim, 29-31 (1953) (1952) · Zbl 0050.25605
[7] K. Conrad, Artin-Hasse-type series and roots of unity, 1994.
[8] Diamond, Jack, The \(p\)-adic log gamma function and \(p\)-adic Euler constants, Trans. Amer. Math. Soc., 321-337 (1977) · Zbl 0382.12008 · doi:10.2307/1997840
[9] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.28 of 2020-09-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.
[10] D. Eric and R. Tanguy, On primary pseudo-polynomials (Around Ruzsa’s Conjecture), 2021.
[11] Hall, R. R., On pseudo-polynomials, Mathematika, 71-77 (1971) · Zbl 0226.10019 · doi:10.1112/S002557930000838X
[12] Hassani, Mehdi, Derangements and applications, J. Integer Seq., Article 03.1.2, 8 pp. (2003) · Zbl 1066.33002
[13] Ishihara, Hideki, \(p\)-divisibility of the number of solutions of \(x^p=1\) in a symmetric group, Ann. Comb., 197-210 (2001) · Zbl 1013.11009 · doi:10.1007/PL00001300
[14] Kuperberg, Vivian, On pseudo-polynomials divisible only by a sparse set of primes and \(\alpha \)-primary pseudo-polynomials, J. Number Theory, 531-541 (2022) · Zbl 1498.11089 · doi:10.1016/j.jnt.2022.04.006
[15] Mahler, K., An interpolation series for continuous functions of a \(p\)-adic variable, J. Reine Angew. Math., 23-34 (1958) · Zbl 0080.03504 · doi:10.1515/crll.1958.199.23
[16] Miska, Piotr, Arithmetic properties of the sequence of derangements, J. Number Theory, 114-145 (2016) · Zbl 1405.11018 · doi:10.1016/j.jnt.2015.11.014
[17] Morita, Yasuo, A \(p\)-adic analogue of the \(\Gamma \)-function, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 255-266 (1975) · Zbl 0308.12003
[18] Ram Murty, M., Introduction to \(p\)-adic analytic number theory, AMS/IP Studies in Advanced Mathematics, x+149 pp. (2002), American Mathematical Society, Providence, RI; International Press, Somerville, MA · Zbl 1031.11067 · doi:10.1090/amsip/027
[19] Murty, M. Ram, Number theory. On the \(p\)-adic series \(\sum^\infty_{n=1}n^k\cdot n!\), CRM Proc. Lecture Notes, 219-227 (2004), Amer. Math. Soc., Providence, RI · Zbl 1074.11012 · doi:10.1090/crmp/036/17
[20] Nelson, Adrian M., A generalized cyclotomic identity, Adv. Math., 1-29 (1990) · Zbl 0737.05013 · doi:10.1016/0001-8708(90)90066-V
[21] O’Desky, Andrew, Functions with integer-valued divided differences, J. Number Theory, 179-199 (2022) · Zbl 1495.13031 · doi:10.1016/j.jnt.2021.06.020
[22] Pa\c{s}ol, Vicen\c{t}iu, Sondow’s conjecture, convergents to \(e\), and \(p\)-adic analytic functions, Math. Z., 499-511 (2019) · Zbl 1448.11135 · doi:10.1007/s00209-019-02303-y
[23] Robert, Alain M., A course in \(p\)-adic analysis, Graduate Texts in Mathematics, xvi+437 pp. (2000), Springer-Verlag, New York · Zbl 0947.11035 · doi:10.1007/978-1-4757-3254-2
[24] Schikhof, W. H., Ultrametric calculus, Cambridge Studies in Advanced Mathematics, xii+306 pp. (2006), Cambridge University Press, Cambridge · Zbl 1152.26025
[25] I. Schur, Einige S\"atze \"uber Primzahlen mit Anwendungen auf Irreduzibilit\"atsfragen I, II, Sitzungsberichte Preuss.Akad.Wiss.Phys.-Math.Klasse, pages 125-136, 152-173, 1929. · JFM 55.0069.03
[26] Serafin, Grzegorz, Identities behind some congruences for \(r\)-Bell and derangement polynomials, Res. Number Theory, Paper No. 39, 8 pp. (2020) · Zbl 1475.11035 · doi:10.1007/s40993-020-00216-y
[27] Sun, Yidong, Congruences on the Bell polynomials and the derangement polynomials, J. Number Theory, 1564-1571 (2013) · Zbl 1339.11035 · doi:10.1016/j.jnt.2012.08.031
[28] Sun, Zhi-Wei, On a curious property of Bell numbers, Bull. Aust. Math. Soc., 153-158 (2011) · Zbl 1257.11024 · doi:10.1017/S0004972711002218
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.