×

Symmetric Zinbiel superalgebras. (English) Zbl 1523.17003

The category of Zinbiel algebras was defined by J.-L. Loday [Math. Scand. 77, No. 2, 189–196 (1995; Zbl 0859.17015)]. The Zinbiel operad is the Koszul dual of the Leibniz operad. A Zinbiel algebra is a vector space \(A\) equipped with a binary operation \(\prec\) satisfying the relation \[ (x\prec y)\prec z=x\prec (y\prec z+z\prec y)\] for all \(x,y,z \in A\). The symmetrized operation \(x y := x\prec y+y\prec x\) is commutative and associative. Therefore we get a functor from the category of Zinbiel algebras to the category of commutative algebras. The commutative algebra associated to the free Zinbiel algebra is the shuffle algebra.
In this paper the authors defined and study the notion of symmetric Zinbiel (super)algebras. The authors prove that each symmetric Zinbiel algebra is a 2-step nilpotent or 3-step nilpotent algebra. Moreover, the authors prove a classification theorem for two-generated symmetric Zinbiel algebras and they describe symmetric Zinbiel superalgebras with two odd generators. Next, the authors investigate mono and binary symmetric Zinbiel algebras. It is proved that each quadratic Zinbiel algebra is 2-step nilpotent. In the last part of the paper the authors introduce and study the notion of double extensions of quadratic Zinbiel algebras.

MSC:

17A30 Nonassociative algebras satisfying other identities
17A32 Leibniz algebras

Citations:

Zbl 0859.17015

References:

[1] Adashev, J.; Camacho, L.; Gomez-Vidal, S.; Karimjanov, I., Naturally graded Zinbiel algebras with nilindex, Linear Algebra Appl, 443, 86-104 (2014) · Zbl 1317.17002 · doi:10.1016/j.laa.2013.11.021
[2] Aguiar, M., Pre-Poisson algebras, Lett. Math. Phys, 54, 4, 263-277 (2000) · Zbl 1032.17038 · doi:10.1023/A:1010818119040
[3] Albuquerque, H.; Benayadi, S., Quadratic Malcev superalgebras, J. Pure Appl. Algebra, 187, 1-3, 19-45 (2004) · Zbl 1082.17004 · doi:10.1016/S0022-4049(03)00145-2
[4] Alvarez, M.; Castilho de Mello, T.; Kaygorodov, I., Central extensions of \(####\)-dimensional Zinbiel algebras, Ric. Mat (2021) · Zbl 1537.17006 · doi:10.1007/s11587-021-00604-1
[5] Alvarez, M.; Fehlberg Júnior, R.; Kaygorodov, I., The algebraic and geometric classification of Zinbiel algebras, J. Pure Appl. Algebra, 226, 11, 107106 (2022) · Zbl 1506.17001 · doi:10.1016/j.jpaa.2022.107106
[6] Benayadi, S.; Mhamdi, F.; Omri, S., Quadratic (resp. symmetric) Leibniz superalgebras, Commun. Algebra, 49, 4, 1725-1750 (2021) · Zbl 1473.17005 · doi:10.1080/00927872.2020.1850751
[7] Bremner, M.; Dotsenko, V., Classification of regular parametrized one-relation operads, Can. J. Math, 69, 5, 992-1035 (2017) · Zbl 1388.18010 · doi:10.4153/CJM-2017-018-3
[8] Calderón, A.; Fernández Ouaridi, A.; Kaygorodov, I., On the classification of bilinear maps with radical of a fixed codimension, Linear Multilinear Algebra (2020) · Zbl 1503.15033 · doi:10.1080/03081087.2020.1849001
[9] Camacho, L.; Cañete, E.; Gómez-Vidal, S.; Omirov, B., \(####\)-filiform Zinbiel algebras, Linear Algebra Appl, 438, 7, 2958-2972 (2013) · Zbl 1300.17002 · doi:10.1016/j.laa.2012.11.030
[10] Chapoton, F., Zinbiel algebras and multiple zeta values, Doc. Math, 27, 519-533 (2022) · Zbl 1498.17006 · doi:10.25537/dm.2022v27.519-533
[11] Colmenarejo, L.; Diehl, J.; Sorea, M., A quadratic identity in the shuffle algebra and an alternative proof for de Bruijn’s formula, European J. Combin, 99, 103406 (2022) · Zbl 1483.17023 · doi:10.1016/j.ejc.2021.103406
[12] Covez, S., Farinati, M., Lebed, V., Manchon, D. (2019). Bialgebraic approach to rack cohomology. arXiv:1905.02754 · Zbl 07706504
[13] Diehl, J.; Ebrahimi-Fard, K.; Tapia, N., Time warping invariants of multidimensional time series, Acta Appl Math, 170, 1, 265-290 (2020) · Zbl 1460.62145 · doi:10.1007/s10440-020-00333-x
[14] Diehl, J., Lyons, T., Preis, R., Reizenstein, J. (2020). Areas of areas generate the shuffle algebra. arXiv:2002.02338
[15] Dokas, I., Zinbiel algebras and commutative algebras with divided powers, Glasgow Math. J, 52, 2, 303-313 (2010) · Zbl 1250.17002 · doi:10.1017/S0017089509990358
[16] Dzhumadildaev, A., Zinbiel algebras over a \(####\)-commutators, J. Math. Sci, 144, 2, 3909-3925 (2007) · doi:10.1007/s10958-007-0244-9
[17] Dzhumadil’Daev, A. S.; Tulenbaev, K. M., Nilpotency of Zinbiel algebras, J. Dyn. Control Syst, 11, 2, 195-213 (2005) · Zbl 1063.17002 · doi:10.1007/s10883-005-4170-1
[18] Dzhumadil’Daev, A. S.; Ismailov, N. A.; Mashurov, F. A., On the speciality of Tortkara algebras, J. Algebra, 540, 1-19 (2019) · Zbl 1442.17001 · doi:10.1016/j.jalgebra.2019.08.010
[19] Gainov, A., Identical relations for binary Lie rings, (Russian) Uspehi Mat. Nauk (N.S.)., 12, 3, 141-146 (1957) · Zbl 0079.04801
[20] Gainov, A., An independent system of identities for a variety of mono-Leibniz algebras, Algebra Logic, 49, 2, 115-119 (2010) · Zbl 1218.17004 · doi:10.1007/s10469-010-9083-8
[21] Gao, X.; Guo, L.; Zhang, Y., Commutative matching Rota-Baxter operators, shuffle products with decorations and matching Zinbiel algebras, J. Algebra, 586, 402-432 (2021) · Zbl 1496.17015 · doi:10.1016/j.jalgebra.2021.06.032
[22] Ikonicoff, S., Pacaud Lemay, J.-S. (2021). Cartesian differential comonads and new models of cartesian differential categories. arXiv:2108.04304 · Zbl 1511.18002
[23] Ismailov, N.; Dzhumadil’daev, A., Binary Leibniz algebras, Math Notes, 110, 3-4, 322-328 (2021) · Zbl 1503.17006 · doi:10.4213/mzm13051
[24] Ismailov, N.; Mashurov, F.; Smadyarov, N., Defining Identities for mono and binary Zinbiel algebras, J. Algebra Appl (2022) · Zbl 07709974 · doi:10.1142/S0219498823501657
[25] Kaygorodov, I.; Lopes, S.; Páez-Guillán, P., Non-associative central extensions of null-filiform associative algebras, J. Algebra, 560, 1190-1210 (2020) · Zbl 1452.16001 · doi:10.1016/j.jalgebra.2020.06.013
[26] Kaygorodov, I.; Popov, Y.; Pozhidaev, A.; Volkov, Y., Degenerations of Zinbiel and nilpotent Leibniz algebras, Linear Multilinear Algebra, 66, 4, 704-716 (2018) · Zbl 1472.17100 · doi:10.1080/03081087.2017.1319457
[27] Kawski, M., Chronological algebras: combinatorics and control, J. Math. Sci. (N.Y.), 103, 6, 725-744 (2001) · Zbl 1157.93353 · doi:10.1023/A:1009502501461
[28] Kolesnikov, P., Commutator algebras of pre-commutative algebras, Mat. Zhur, 16, 2, 56-70 (2016) · Zbl 1479.17006
[29] Loday, J.-L., Cup-product for Leibniz cohomology and dual Leibniz algebras, Math. Scand, 77, 2, 189-196 (1995) · Zbl 0859.17015 · doi:10.7146/math.scand.a-12560
[30] Loday, J.-L., On the algebra of quasi-shuffles, Manuscr. Math, 123, 1, 79-93 (2007) · Zbl 1126.16029 · doi:10.1007/s00229-007-0086-2
[31] Mukherjee, G.; Saha, R., Cup-product for equivariant Leibniz cohomology and Zinbiel algebras, Algebra Colloq, 26, 2, 271-284 (2019) · Zbl 1456.17003 · doi:10.1142/S100538671900021X
[32] Naurazbekova, A., On the structure of free dual Leibniz algebras, EMJ, 10, 3, 40-47 (2019) · Zbl 1463.17009 · doi:10.32523/2077-9879-2019-10-3-40-47
[33] Naurazbekova, A.; Umirbaev, U., Identities of dual Leibniz algebras, TWMS J. Pure Appl. Math, 1, 1, 86-91 (2010) · Zbl 1223.17003
[34] Towers, D., Zinbiel algebras are nilpotent, J. Algebra Appl (2022) · Zbl 07709975 · doi:10.1142/S0219498823501669
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.