×

Interpolation and exponentially suppressed cosmological constant in non-supersymmetric heterotic strings with general \(\mathbb{Z}_2\) twists. (English) Zbl 1522.83340

Summary: We study general non-supersymmetric heterotic string models, including so-called interpolating models, \(d\)-dimensionally compactified with the arbitrary number of freely acting \(\mathbb{Z}_2\) twisted directions. Taking the limits of the compactified radii to zero and infinity (the endpoint limits), we show some examples of the various interpolation patterns in the \(d = 2\) (8-dimensional) case. In the region where supersymmetry is asymptotically restored, we derive the formula for the one-loop cosmological constant of \((10 - d)\) dimensional non-supersymmetric heterotic string models with general \(\mathbb{Z}_2\) twists, which does not depend on all the other endpoints and find out the points in the moduli space where the cosmological constant is exponentially suppressed. The moduli stability of the cosmological constant is also analyzed.

MSC:

83E30 String and superstring theories in gravitational theory
81T33 Dimensional compactification in quantum field theory
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
83E50 Supergravity

References:

[1] Dixon, L. J.; Harvey, J. A., String theories in ten-dimensions without space-time supersymmetry, Nucl. Phys. B, 274, 93-105 (1986)
[2] Alvarez-Gaume, L.; Ginsparg, P. H.; Moore, G. W.; Vafa, C., An O(16) x O(16) heterotic string, Phys. Lett. B, 171, 155-162 (1986)
[3] Ginsparg, P. H.; Vafa, C., Toroidal compactification of nonsupersymmetric heterotic strings, Nucl. Phys. B, 289, 414 (1987)
[4] Kawai, H.; Lewellen, D. C.; Tye, S. H.H., Construction of fermionic string models in four-dimensions, Nucl. Phys. B, 288, 1 (1987)
[5] Itoyama, H.; Taylor, T. R., Supersymmetry restoration in the compactified O(16) x O(16)-prime heterotic string theory, Phys. Lett. B, 186, 129-133 (1987)
[6] Itoyama, H.; Taylor, T. R., Small cosmological constant in string models. International Europhysics Conference on High-Energy Physics, vol. 6 (1987)
[7] Itoyama, H.; Koga, Y.; Nakajima, S., Target space duality of non-supersymmetric string theory, Nucl. Phys. B, 975, Article 115667 pp. (2022) · Zbl 1485.83107
[8] Itoyama, H.; Koga, Y.; Nakajima, S., Gauge symmetry enhancement by Wilson lines in twisted compactification
[9] Itoyama, H.; Nakajima, S., Exponentially suppressed cosmological constant with enhanced gauge symmetry in heterotic interpolating models, PTEP, 2019, 12, Article 123B01 pp. (2019) · Zbl 1477.83081
[10] Itoyama, H.; Nakajima, S., Stability, enhanced gauge symmetry and suppressed cosmological constant in 9D heterotic interpolating models, Nucl. Phys. B, 958, Article 115111 pp. (2020) · Zbl 1473.83095
[11] Itoyama, H.; Nakajima, S., Marginal deformations of heterotic interpolating models and exponential suppression of the cosmological constant, Phys. Lett. B, 816, Article 136195 pp. (2021) · Zbl 07408668
[12] Blum, J. D.; Dienes, K. R., Strong/weak coupling duality relations for nonsupersymmetric string theories, Nucl. Phys. B, 516, 83-159 (1998) · Zbl 0920.53036
[13] Abel, S.; Dienes, K. R.; Mavroudi, E., Towards a nonsupersymmetric string phenomenology, Phys. Rev. D, 91, 12, Article 126014 pp. (2015)
[14] Aaronson, B.; Abel, S.; Mavroudi, E., Interpolations from supersymmetric to nonsupersymmetric strings and their properties, Phys. Rev. D, 95, 10, Article 106001 pp. (2017)
[15] Abel, S.; Stewart, R. J., Exponential suppression of the cosmological constant in nonsupersymmetric string vacua at two loops and beyond, Phys. Rev. D, 96, 10, Article 106013 pp. (2017)
[16] Florakis, I.; Rizos, J., Chiral heterotic strings with positive cosmological constant, Nucl. Phys. B, 913, 495-533 (2016) · Zbl 1349.81153
[17] Faraggi, A. E.; Tsulaia, M., Interpolations among NAHE-based supersymmetric and nonsupersymmetric string vacua, Phys. Lett. B, 683, 314-320 (2010)
[18] Faraggi, A. E.; Percival, B.; Schewe, S.; Wojtczak, D., Satisfiability modulo theories and chiral heterotic string vacua with positive cosmological constant, Phys. Lett. B, 816, Article 136187 pp. (2021) · Zbl 07408660
[19] Kounnas, C.; Partouche, H., Super no-scale models in string theory, Nucl. Phys. B, 913, 593-626 (2016) · Zbl 1349.81158
[20] Kounnas, C.; Partouche, H., \( \mathcal{N} = 2 \to 0\) super no-scale models and moduli quantum stability, Nucl. Phys. B, 919, 41-73 (2017) · Zbl 1361.81125
[21] Coudarchet, T.; Partouche, H., Quantum no-scale regimes and moduli dynamics, Nucl. Phys. B, 933, 134-184 (2018) · Zbl 1395.81183
[22] Angelantonj, C.; Partouche, H.; Pradisi, G., Heterotic − type I dual pairs, rigid branes and broken SUSY, Nucl. Phys. B, 954, Article 114976 pp. (2020) · Zbl 1473.81133
[23] Abel, S.; Coudarchet, T.; Partouche, H., On the stability of open-string orbifold models with broken supersymmetry, Nucl. Phys. B, 957, Article 115100 pp. (2020) · Zbl 1473.81130
[24] Moore, G. W., Atkin-Lehner symmetry, Nucl. Phys. B. Nucl. Phys. B, Nucl. Phys. B, 299, 847 (1988), Erratum:
[25] Taylor, T. R., Model building on asymmetric Z(3) orbifolds: nonsupersymmetric models, Nucl. Phys. B, 303, 543-556 (1988)
[26] Balog, J.; Tuite, M. P., The failure of Atkin-Lehner symmetry for lattice compactified strings, Nucl. Phys. B, 319, 387-414 (1989)
[27] Dienes, K. R., New string partition functions with vanishing cosmological constant, Phys. Rev. Lett., 65, 1979-1982 (1990)
[28] Dienes, K. R., Generalized Atkin-Lehner symmetry, Phys. Rev. D, 42, 2004-2021 (1990)
[29] Kachru, S.; Kumar, J.; Silverstein, E., Vacuum energy cancellation in a nonsupersymmetric string, Phys. Rev. D, 59, Article 106004 pp. (1999)
[30] Kachru, S.; Silverstein, E., On vanishing two loop cosmological constants in nonsupersymmetric strings, J. High Energy Phys., 01, Article 004 pp. (1999) · Zbl 0965.81076
[31] Kachru, S.; Silverstein, E., Selfdual nonsupersymmetric type II string compactifications, J. High Energy Phys., 11, Article 001 pp. (1998) · Zbl 0949.81036
[32] Satoh, Y.; Sugawara, Y.; Wada, T., Non-supersymmetric asymmetric orbifolds with vanishing cosmological constant, J. High Energy Phys., 02, Article 184 pp. (2016) · Zbl 1388.83695
[33] Sugawara, Y.; Wada, T., More on non-supersymmetric asymmetric orbifolds with vanishing cosmological constant, J. High Energy Phys., 08, Article 028 pp. (2016) · Zbl 1390.83355
[34] Aoyama, K.; Sugawara, Y., Non-SUSY heterotic string vacua of Gepner models with vanishing cosmological constant, PTEP, 2021, 3, Article 033B03 pp. (2021) · Zbl 1515.83260
[35] Satoh, Y.; Sugawara, Y., Notes on a vanishing cosmological constant without Bose-Fermi cancellation, PTEP, 2022, 5, Article 053B04 pp. (2022) · Zbl 1497.83061
[36] Scherk, J.; Schwarz, J. H., Spontaneous breaking of supersymmetry through dimensional reduction, Phys. Lett. B, 82, 60-64 (1979)
[37] Rohm, R., Spontaneous supersymmetry breaking in supersymmetric string theories, Nucl. Phys. B, 237, 553-572 (1984)
[38] Kounnas, C.; Rostand, B., Coordinate dependent compactifications and discrete symmetries, Nucl. Phys. B, 341, 641-665 (1990)
[39] Narain, K. S.; Sarmadi, M. H.; Witten, E., A note on toroidal compactification of heterotic string theory, Nucl. Phys. B, 279, 369-379 (1987)
[40] Abel, S.; Dienes, K. R.; Mavroudi, E., GUT precursors and entwined SUSY: the phenomenology of stable nonsupersymmetric strings, Phys. Rev. D, 97, 12, Article 126017 pp. (2018)
[41] Kounnas, C.; Partouche, H., Stringy N = 1 super no-scale models, PoS, PLANCK2015, Article 070 pp. (2015)
[42] Coudarchet, T.; Fleming, C.; Partouche, H., Quantum no-scale regimes in string theory, Nucl. Phys. B, 930, 235-254 (2018) · Zbl 1404.81205
[43] Coudarchet, T.; Partouche, H., One-loop masses of Neumann-Dirichlet open strings and boundary-changing vertex operators, J. High Energy Phys., 12, Article 022 pp. (2021) · Zbl 1521.81214
[44] Coudarchet, T.; Dudas, E.; Partouche, H., Geometry of orientifold vacua and supersymmetry breaking, J. High Energy Phys., 07, Article 104 pp. (2021) · Zbl 1468.81107
[45] Baykara, Z. K.; Robbins, D.; Sethi, S., Non-supersymmetric AdS from string theory · Zbl 07906519
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.