×

Truncated affine Rozansky-Witten models as extended TQFTs. (English) Zbl 1522.81176

Summary: We construct extended TQFTs associated to Rozansky-Witten models with target manifolds \(T^*\mathbb{C}^n\). The starting point of the construction is the 3-category whose objects are such Rozansky-Witten models, and whose morphisms are defects of all codimensions. By truncation, we obtain a (non-semisimple) 2-category \(\mathcal C\) of bulk theories, surface defects, and isomorphism classes of line defects. Through a systematic application of the cobordism hypothesis we construct a unique extended oriented 2-dimensional TQFT valued in \(\mathcal C\) for every affine Rozansky-Witten model. By evaluating this TQFT on closed surfaces we obtain the infinite-dimensional state spaces (graded by flavour and R-charges) of the initial 3-dimensional theory. Furthermore, we explicitly compute the commutative Frobenius algebras that classify the restrictions of the extended theories to circles and bordisms between them.

MSC:

81T10 Model quantum field theories
81T50 Anomalies in quantum field theory
55N22 Bordism and cobordism theories and formal group laws in algebraic topology
81P16 Quantum state spaces, operational and probabilistic concepts
81V05 Strong interaction, including quantum chromodynamics
13A35 Characteristic \(p\) methods (Frobenius endomorphism) and reduction to characteristic \(p\); tight closure

References:

[1] Ayala, D., Francis, J.: The cobordism hypothesis. arXiv:1705.02240 [math.AT]
[2] Banks, P.: Extended TQFTs and algebraic geometry. arXiv:2011.02394 [math.QA]
[3] Baez, J.; Dolan, J., Higher dimensional algebra and topological quantum field theory, J. Math. Phys., 36, 6073-6105 (1995) · Zbl 0863.18004 · doi:10.1063/1.531236
[4] Bullimore, M., Ferrari, A., Kim, H.: Supersymmetric ground states of 3d \(\cal{N}=4\) Gauge theories on a Riemann surface. arXiv:2105.08783 [hep-th]
[5] Brunner, I.; Klos, F.; Roggenkamp, D., Phase transitions in GLSMs and defects, JHEP, 05, 006 (2021) · Zbl 1466.83116 · doi:10.1007/JHEP05(2021)006
[6] Barrett, J., Meusburger, C., Schaumann, G.: Gray categories with duals and their diagrams. arXiv:1211.0529 [math.QA]
[7] Brunner, I.; Roggenkamp, D., B-type defects in Landau-Ginzburg models, JHEP, 08, 093 (2007) · Zbl 1326.81187 · doi:10.1088/1126-6708/2007/08/093
[8] Carqueville, N., Lecture notes on 2-dimensional defect TQFT, Banach Cent. Publ., 114, 49-84 (2018) · Zbl 1401.18014 · doi:10.4064/bc114-2
[9] Creutzig, T., Dimofte, T., Garner, N., Geer, N.: A QFT for non-semisimple TQFT. arXiv:2112.01559 [hep-th]
[10] Carqueville, N.; Murfet, D., Adjunctions and defects in Landau-Ginzburg models, Adv. Math., 289, 480-566 (2016) · Zbl 1353.18004 · doi:10.1016/j.aim.2015.03.033
[11] Carqueville, N.; Montiel Montoya, F., Extending Landau-Ginzburg models to the point, Commun. Math. Phys., 379, 955-977 (2020) · Zbl 1445.18016 · doi:10.1007/s00220-020-03871-5
[12] Carqueville, N.; Meusburger, C.; Schaumann, G., 3-Dimensional defect TQFTs and their tricategories, Adv. Math., 364 (2020) · Zbl 1441.81125 · doi:10.1016/j.aim.2020.107024
[13] Carqueville, N., Runkel, I., Schaumann, G.: Orbifolds of \(n\)-dimensional defect TQFTs. Geom. Topol. 23, 781-864 (2019). doi:10.2140/gt.2019.23.781. arXiv:1705.06085 [math.QA] · Zbl 1441.57030
[14] Calaque, D., Scheimbauer, C.: A note on the \((\infty , n)\)-category of cobordisms. Algebr. Geom. Topol. 19, 533-655 (2019). doi:10.2140/agt.2019.19.533. arXiv:1509.08906 · Zbl 1420.18012
[15] Carqueville, N., Szegedy, L.: Fully extended \(r\)-spin TQFTs. arXiv:2107.02046 [math.QA]
[16] Căldăraru, A.; Willerton, S., The Mukai pairing, I: a categorical approach, N. Y. J. Math., 16, 61-98 (2010) · Zbl 1214.14013
[17] Douglas, C.; Schommer-Pries, C.; Snyder, N., Dualizable tensor categories, Mem. Am. Math. Soc., 268, 1308 (2020) · Zbl 1514.57001 · doi:10.1090/memo/1308
[18] Eisenbud, D., Homological algebra on a complete intersection, with an application to group representations, Trans. Am. Math. Soc., 260, 35-64 (1980) · Zbl 0444.13006 · doi:10.1090/S0002-9947-1980-0570778-7
[19] Freed, DS; Teleman, C., Gapped boundary theories in three dimensions, Commun. Math. Phys., 388, 845-892 (2021) · Zbl 1479.81063 · doi:10.1007/s00220-021-04192-x
[20] Gukov, S.; Hsin, PS; Nakajima, H.; Park, S.; Pei, D.; Sopenko, N., Rozansky-Witten geometry of Coulomb branches and logarithmic knot invariants, J. Geom. Phys., 168 (2021) · Zbl 1471.81084 · doi:10.1016/j.geomphys.2021.104311
[21] Grady, D., Pavlov, D.: The geometric cobordism hypothesis. arXiv:2111.01095 [math.AT]
[22] Hesse, J.: Group actions on Bicategories and topological quantum field theories. Ph.D. thesis, University of Hamburg (2017). https://ediss.sub.uni-hamburg.de/volltexte/2017/8655/pdf/Dissertation.pdf
[23] Hesse, J.; Schweigert, C.; Valentino, A., Frobenius algebras and homotopy fixed points of group actions on bicategories, Theory Appl. Categ., 32, 652-681 (2017) · Zbl 1377.18003
[24] Hesse, J., Valentino, A.: The Serre automorphism via homotopy actions and the cobordism hypothesis for oriented manifolds. cahiers de topologie et géométrie différentielle catégoriques LX-2 (2019), 194-236, http://cahierstgdc.com/wp-content/uploads/2019/04/Hesse_Valentino-LX-2.pdf. arXiv:1701.03895 [math.QA] · Zbl 1427.57023
[25] Johnson, N., Yau, D.: 2-Dimensional Categories. Oxford University Press, Oxford (2021). doi:10.1093/oso/9780198871378.001.0001. arXiv:2002.06055 [math.CT] · Zbl 1471.18002
[26] Kalck, M.: Classifying dg-categories of matrix factorizations. arXiv:2108.03292 [math.AG] · Zbl 1323.16012
[27] Kapustin, A.; Rozansky, L., Three-dimensional topological field theory and symplectic algebraic geometry II, Commun. Number Theory Phys., 4, 463-549 (2010) · Zbl 1220.81169 · doi:10.4310/CNTP.2010.v4.n3.a1
[28] Khovanov, M.; Rozansky, L., Matrix factorizations and link homology, Fund. Math., 199, 1-91 (2008) · Zbl 1145.57009 · doi:10.4064/fm199-1-1
[29] Kock, J., Frobenius Algebras and 2D Topological Quantum Field Theories. London Mathematical Society Student Texts 59 (2003), Cambridge: Cambridge University Press, Cambridge · doi:10.1017/CBO9780511615443
[30] Kapustin, A.; Rozansky, L.; Saulina, N., Three-dimensional topological field theory and symplectic algebraic geometry I, Nucl. Phys. B, 816, 295-355 (2009) · Zbl 1194.81224 · doi:10.1016/j.nuclphysb.2009.01.027
[31] Leinster, T.: Basic bicategories. arXiv:math/9810017 [math.CT] · Zbl 1295.18001
[32] Lurie, J., On the classification of topological field theories, Curr. Dev. Math., 2009, 129-280 (2008) · Zbl 1180.81122 · doi:10.4310/CDM.2008.v2008.n1.a3
[33] Oblomkov, A., Rozansky, L.: 3D TQFT and HOMFLYPT homology. arXiv:1812.06340 [math.GT]
[34] Pstragowski, P.: On dualizable objects in monoidal bicategories, framed surfaces and the Cobordism Hypothesis. Master thesis, University of Bonn (2014). arXiv:1411.6691 [math.AT]
[35] Rozansky, L.; Witten, E., Hyper-Kähler geometry and invariants of three-manifolds, Sel. Math., 3, 401-458 (1997) · Zbl 0908.53027 · doi:10.1007/s000290050016
[36] Schommer-Pries, C.: The classification of two-dimensional extended topological field theories. PhD thesis, University of California, Berkeley (2009). arXiv:1112.1000v2 [math.AT] · Zbl 1405.18009
[37] Trimble, T.: Surface diagrams. https://ncatlab.org/toddtrimble/published/Surface+diagrams
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.