×

Revisiting the robustness of the multiscale hybrid-mixed method: the face-based strategy. (English) Zbl 1522.65223

Summary: This work proposes a new finite element for the multiscale hybrid-mixed method (MHM) applied to the Poisson equation with highly oscillatory coefficients. Unlike the original MHM method, multiscale bases are the solution to local Neumann problems driven by piecewise continuous polynomial interpolation on the skeleton faces of the macroscale mesh. As a result, we prove the optimal convergence of MHM by refining the face partition and leaving the mesh of macroelements fixed. This property allows the MHM method to be resonance free under the usual assumptions of local regularity. The numerical analysis of the method also revisits and complements the original approach proposed by D. Paredes et al. [Math. Comput. 86, No. 304, 525–548 (2017; Zbl 1355.65159)]. Numerical experiments assess the new theoretical results.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
35B65 Smoothness and regularity of solutions to PDEs
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs

Citations:

Zbl 1355.65159

References:

[1] Babuška, I.; Osborn, E., Generalized finite element methods: Their performance and their relation to mixed methods, SIAM J. Num. Anal., 20, 3, 510-536 (1983) · Zbl 0528.65046
[2] Hughes, T. J.R.; Feijó, G. R.; Mazzei, L.; Quincy, J., The variational multiscale method - a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166, 1-2, 3-24 (1998) · Zbl 1017.65525
[3] Efendiev, Y. R.; Hou, T. Y.; Wu, Xiao-Hui, Convergence of a nonconforming multiscale finite element method, SIAM J. Numer. Anal., 37, 3, 888-910 (2000) · Zbl 0951.65105
[4] Araya, R.; Barrenechea, G. R.; Franca, L. P.; Valentin, F., Stabilization arising from PGEM: a review and further developments, Appl. Numer. Math., 59, 9, 2065-2081 (2009) · Zbl 1165.76021
[5] Fernando, H.; Harder, C.; Paredes, D.; Valentin, F., Numerical multiscale methods for a reaction-dominated model, Comput. Methods Appl. Mech. Engrg., 201, 228-244 (2012) · Zbl 1239.65069
[6] Weinan, E.; Engquist, B., The heterogeneous multiscale methods, Commun. Math. Sci., 1, 1, 87-132 (2003) · Zbl 1093.35012
[7] Arbogast, T.; Pencheva, G.; Wheeler, M. F.; Yotov, I., A multiscale mortar mixed finite element method, SIAM Multiscale Model. Simul., 6, 319-346 (2007) · Zbl 1322.76039
[8] Malqvist, A.; Peterseim, D., Localization of elliptic multiscale problems, Math. Comp., 83, 290, 2583-2603 (2014) · Zbl 1301.65123
[9] Madureira, A. L.; Sarkis, M., Hybrid localized spectral decomposition for multiscale problems, SIAM J. Numer. Anal., 59, 2, 829-863 (2021) · Zbl 1468.65221
[10] Cicuttin, M.; Ern, A.; Lemaire, S., A multiscale hybrid high-order method, Comput. Methods Appl. Math, 19, 723-748 (2019) · Zbl 1434.65246
[11] Harder, C.; Paredes, D.; Valentin, F., A family of multiscale hybrid-mixed finite element methods for the Darcy equation with rough coefficients, J. Comput. Phys., 245, 107-130 (2013) · Zbl 1349.76214
[12] Araya, R.; Harder, C.; Paredes, D.; Valentin, F., Multiscale hybrid-mixed method, SIAM J. Numer. Anal., 51, 6, 3505-3531 (2013) · Zbl 1296.65152
[13] Harder, C.; Valentin, F., Foundations of the MHM method, (Barrenechea, G. R.; Brezzi, F.; Cangiani, A.; Georgoulis, E. H., Building Bridges: Connections and Challenges in Modern Approaches To Numerical Partial Differential Equations. Building Bridges: Connections and Challenges in Modern Approaches To Numerical Partial Differential Equations, Lecture Notes in Computational Science and Engineering (2016), Springer: Springer Edinburgh) · Zbl 1357.65261
[14] Chaumont-Frélet, T.; Ern, A.; Lemaire, S.; Valentin, F., Bridging the multiscale hybrid-mixed and multiscale hybrid high-order methods, ESAIM: M2AN, 56, 1, 261-285 (2022) · Zbl 1486.65241
[15] Barrenechea, G. R.; Jaillet, F.; Paredes, D.; Valentin, F., The multiscale hybrid mixed method in general polygonal meshes, Numer. Math., 145, 197-237 (2020) · Zbl 1440.65177
[16] Duran, O.; Devloo, P. R.B.; Gomes, S. M.; Valentin, F., A multiscale hybrid method for Darcy’s problems using mixed finite element local solvers, Comput. Methods Appl. Mech. Engrg., 354, 213-244 (2019) · Zbl 1441.76058
[17] Paredes, D.; Valentin, F.; Versieux, H. M., On the robustness of multiscale hybrid-mixed methods, Math. Comp., 86, 304, 525-548 (2017) · Zbl 1355.65159
[18] Hou, T. Y.; Wu, X.; Cai, Z., Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comp., 68, 227, 913-943 (1999) · Zbl 0922.65071
[19] Jikov, V. V.; Kozlov, S. M.; Oleĭnik, O. A., Homogenization of Differential Operators and Integral Functionals, xii+570 (1994), Springer-Verlag: Springer-Verlag Berlin, Translated from the Russian by G. A. Yosifian [G. A. Iosif’yan] · Zbl 0838.35001
[20] Gomes, A. T.A.; Pereira, W.; Valentin, F., The MHM method for linear elasticity on polytopal meshes, IMA J. Numer. Anal. (2022)
[21] Raviart, P.-A.; Thomas, J. M., Primal hybrid finite element methods for \(2\) nd order elliptic equations, Math. Comp., 31, 138, 391-413 (1977) · Zbl 0364.65082
[22] Scott, L.; Zhang, S., Finite element interpolation of nonsmooth functions satisfying boundary conditions., Math. Comp., 54, 483-493 (1990) · Zbl 0696.65007
[23] Ern, A.; Guermond, J.-L., Theory and Practice of Finite Elements (2004), Springer-Verlag: Springer-Verlag Berlin, New-York · Zbl 1059.65103
[24] T. Chaumont-Frelet, D. Paredes, F. Valentin, Flux Approximation on Unfitted Meshes and Application to Multiscale Hybrid-Mixed Methods,, Technical report, hal-03834748, 2022.
[25] Society of Petroleum Engineers, SPE comparative solution project (2000)
[26] Girault, V.; Raviart, P.-A., (Finite Element Methods for Navier-STokes Equations. Finite Element Methods for Navier-STokes Equations, Springer Series in Computational Mathematics, vol. 5 (1986), Springer-Verlag: Springer-Verlag Berlin), x+374, Theory and algorithms · Zbl 0585.65077
[27] Tanaka, K.; Sekine, K.; Mizuguchi, M., Estimation of Sobolev-type embedding constant on domains with minimally smooth boundary using extension operator, J. Inequal. Appl., 389 (2015) · Zbl 1346.46030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.