×

Some classical problems of geometric approximation theory in asymmetric spaces. (English. Russian original) Zbl 1522.46012

Math. Notes 112, No. 1, 3-16 (2022); translation from Mat. Zametki 112, No. 1, 3-19 (2022).
The authors continue their investigations on best approximation problems in asymmetric normed spaces. An asymmetric norm on a real vector space \(X\) is a functional \(\|\cdot|:X\to[0,\infty)\) satisfying all the axioms of a norm with positive homogeneity instead of absolute homogeneity (see [S. Cobzaş, Functional analysis in asymmetric normed spaces. Basel: Birkhäuser (2013; Zbl 1266.46001)]). For a nonempty subset \(M\) of \(X\) and \(x\in X\), put \(\rho(x,M)=\inf\{\|y-x|: y\in M\}\) (the distance from \(x\) to \(M\)) and \(P_Mx= \{y\in M:\|y-x|=\rho(x,M)\}\) (the metric projection). Due to the asymmetry of the norm \(\|\cdot|\) (that is, the possibility that \(\|{-}x|\ne\|x| \) for some \(x\in X\)), many results from the symmetric case cease to hold in the asymmetric case (e.g., the continuity of the distance function).
The focus in the present paper is on various kinds of solar properties of sets which reveal the structure of approximating sets and, in some cases, can also be useful for designing numerical approximation algorithms.
As the authors point out in the abstract: “We establish a number of theorems of geometric approximation theory in asymmetrically normed spaces. Sets with continuous selection of the near-best approximation operator are studied and properties of such sets are discussed in terms of \(\delta\)-solar points and the distance function. A result on the coincidence of the classes of \(\delta\)- and \(\gamma\)-suns in asymmetric spaces is given. An asymmetric analogue of the Kolmogorov criterion for an element of best approximation for suns, strict suns, and \(\alpha\)-suns is put forward.”

MSC:

46B20 Geometry and structure of normed linear spaces
41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
54C65 Selections in general topology

Citations:

Zbl 1266.46001
Full Text: DOI

References:

[1] Donjuán, V.; Jonard-Pérez, N., Separation axioms and covering dimension of asymmetric normed spaces, Quaest. Math., 43, 4, 467-491 (2020) · Zbl 1479.46006 · doi:10.2989/16073606.2019.1581298
[2] Krein, M. G., The \(L\)-problem in an abstract normed linear space, Some Problems of the Theory of Moments, 171-199 (1938), Kharkov: Gos. Nauch. Tekh. Izd. Ukrainy, Kharkov
[3] Cobzaş, Ş., Functional Analysis in Asymmetric Normed Spaces (2013), Basel: Birkhäuser/Springer Basel AG, Basel · Zbl 1266.46001 · doi:10.1007/978-3-0348-0478-3
[4] Alimov, A. R., Convexity of Chebyshev sets contained in a subspace, Math. Notes, 78, 1, 3-13 (2005) · Zbl 1095.46008 · doi:10.1007/s11006-005-0093-0
[5] Alimov, A. R., Selections of the metric projection operator and strict solarity of sets with continuous metric projection, Sb. Math., 208, 7, 915-928 (2017) · Zbl 1426.41039 · doi:10.1070/SM8765
[6] Alimov, A. R., Characterization of sets with continuous metric projection in the space \(\ell^\infty_n\), Math. Notes, 108, 3, 309-317 (2020) · Zbl 1452.41016 · doi:10.1134/S0001434620090011
[7] Alimov, A. R.; Tsar’kov, I. G., Smoothness of subspace sections of the unit balls of \(C (Q)\) and \(L^1\), J. Approx. Theory, 265, Paper No. 105552 (2021) · Zbl 1464.46022 · doi:10.1016/j.jat.2021.105552
[8] Merino, B. G.; Jahn, T.; Richter, C., Uniqueness of circumcenters in generalized Minkowski spaces, J. Approx. Theory, 237, 153-159 (2019) · Zbl 1402.52003 · doi:10.1016/j.jat.2018.09.005
[9] Lebedev, P. D.; Uspenskii, A. A., On the analytical construction of solutions for one class of time-optimal control problems with nonconvex target set, Trudy Inst. Mat. Mekh. UrO RAN, 27, 128-140 (2021) · doi:10.21538/0134-4889-2021-27-3-128-140
[10] Tsar’kov, I. G., Continuous selections for metric projection operators and for their generalizations, Izv. Math., 82, 4, 837-859 (2018) · Zbl 1410.46007 · doi:10.1070/IM8695
[11] Tsar’kov, I. G., Local approximation properties of sets and continuous selections on them, Math. Notes, 106, 6, 995-1008 (2019) · Zbl 1436.41020
[12] Tsar’kov, I. G., Approximative properties of sets and continuous selections, Sb. Math., 211, 8, 1190-1211 (2020) · Zbl 1455.54019 · doi:10.1070/SM9319
[13] Tsar’kov, I. G., Uniform convexity in nonsymmetric spaces, Math. Notes, 110, 5, 773-783 (2021) · Zbl 1489.46022 · doi:10.1134/S0001434621110146
[14] Alimov, A. R.; Tsar’kov, I. G., \( \mathring{B} \)-complete sets and their approximative and structural properties, Sib. Math. J., 63, 3, 412-420 (2022) · Zbl 1506.46017 · doi:10.1134/S0037446622030028
[15] Alimov, A. R.; Tsar’kov, I. G., Ball-complete sets and solar properties of sets in asymmetric spaces, Results Math., 77, Paper No. 86 (2022) · Zbl 1506.46016 · doi:10.1007/s00025-022-01619-2
[16] Cobzaş, S., Compact bilinear operators on asymmetric normed spaces, Topology Appl., 306, Paper No. 107922 (2022) · Zbl 1489.46052 · doi:10.1016/j.topol.2021.107922
[17] Tsar’kov, I. G., Local and global continuous \(\varepsilon \)-selection, Izv. Math., 80, 2, 442-461 (2016) · Zbl 1356.46013 · doi:10.1070/IM8348
[18] Alimov, A. R.; Tsar’kov, I. G., Connectedness and solarity in problems of best and near-best approximation, Russian Math. Surveys, 71, 1, 1-77 (2016) · Zbl 1350.41031 · doi:10.1070/RM9698
[19] Tsar’kov, I. G., Properties of sets admitting stable \(\varepsilon \)-selections, Math. Notes, 89, 4, 572-576 (2011) · Zbl 1245.49024 · doi:10.1134/S0001434611030291
[20] Vlasov, L. P., Approximative properties of sets in normed linear spaces, Uspekhi Mat. Nauk, 28, 6-174, 3-66 (1973) · Zbl 0293.41031
[21] Bachir, M.; Flores, G., Index of symmetry and topological classification of asymmetric normed spaces, Rocky Mountain J. Math., 50, 6, 1951-1964 (2020) · Zbl 1460.46073 · doi:10.1216/rmj.2020.50.1951
[22] Collins, J.; Zimmer, J., An asymmetric Arzelà-Ascoli theorem, Topology Appl., 154, 11, 2312-2322 (2007) · Zbl 1123.26002 · doi:10.1016/j.topol.2007.03.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.