×

Analysis of analytical solutions of fractional Date-Jimbo-Kashiwara-Miwa equation. (English) Zbl 1522.35146

Summary: In this study, the authors solved the \((2 + 1)\)-dimensional fractional Date-Jimbo-Kashiwara-Miwa equation for nonlinear dispersive waves in an inhomogeneous medium, which is an extension of the Kadomtsev-Petviashvili hierarchy. A powerful analytical technique, the new auxiliary equation method, is employed to develop the class of soliton solutions to the considered equation which contains dark, bright, and periodic wave solutions. A comparative analysis is done by using two fractional derivatives, namely, \(\beta\) and Atangana-Baleanu. While using this technique, the nonlinear ordinary differential equation in integer order is formed using chain rule from the fractional Date-Jimbo-Kashiwara-Miwa equation. There is no more a requirement to perform any normalization or discretization because of the chain rule. These obtained results are graphically portrayed such as \(3D\) and \(2D\) using suitable parametric values. The exact solutions to this equation are necessary to comprehend wave behavior in physical models. Moreover, a sensitive analysis to the fractional dynamical system is performed and graphically shown the behavior on initial conditions.

MSC:

35C08 Soliton solutions
35C07 Traveling wave solutions
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Sarwar, A.; Gang, T.; Arshad, M.; Ahmed, I.; Ahmad, M. O., Abundant solitary wave solutions for space-time fractional unstable nonlinear Schrödinger equations and their applications, Ain Shams Eng. J., 14, 2, Article 101839 pp. (2023)
[2] Rahman, R. U.; Al-Maaitah, A. F.; Qousini, M.; Az-Zobi, E. A.; Eldin, S. M.; Abuzar, M., New soliton solutions and modulation instability analysis of fractional Huxley equation, Results Phys., Article 106163 pp. (2022)
[3] Zafar, A.; Shakeel, M.; Ali, A.; Rezazadeh, H.; Bekir, A., Analytical study of complex Ginzburg-Landau equation arising in nonlinear optics, J. Nonlinear Opt. Phys. Mater., Article 2350010 pp. (2022)
[4] Ismael, H. F.; Sulaiman, T. A.; Osman, M. S., Multi-solutions with specific geometrical wave structures to a nonlinear evolution equation in the presence of the linear superposition principle, Commun. Theor. Phys., 75, 1, Article 015001 pp. (2022) · Zbl 1516.35355
[5] Cinar, M.; Secer, A.; Bayram, M., On the optical soliton solutions of time-fractional Biswas-Arshed equation including the beta or M-truncated derivatives, Opt. Quantum Electron., 55, 2, 186 (2023)
[6] Poonia, M.; Singh, K., Exact solutions of nonlinear dynamics of microtubules equation using the methods of first integral and (G’/G) expansion, Asian-Eur. J. Math., 16, 01, Article 2350007 pp. (2023)
[7] Gu, Y.; Zia, S. M.; Isam, M.; Manafian, J.; Hajar, A.; Abotaleb, M., Bilinear method and semi-inverse variational principle approach to the generalized \((2 + 1)\)-dimensional shallow water wave equation, Results Phys., Article 106213 pp. (2023)
[8] Atas, S. S.; Ali, K. K.; Sulaiman, T. A.; Bulut, H., Invariant optical soliton solutions to the Coupled-Higgs equation, Opt. Quantum Electron., 54, 11, 754 (2022)
[9] Younas, U.; Sulaiman, T. A.; Ren, J., Dynamics of optical pulses in dual-core optical fibers modelled by decoupled nonlinear Schrödinger equation via GERF and NEDA techniques, Opt. Quantum Electron., 54, 11, 738 (2022)
[10] Wei, C. C.; Tian DY Yang, B.; Liu, S. H., Jacobian-elliptic-function and rogue-periodic-wave solutions of a high-order nonlinear Schrödinger equation in an inhomogeneous optical fiber, Chin. J. Phys., 81, 354-361 (2023) · Zbl 07855242
[11] Poonia, M.; Singh, K., Exact solutions of nonlinear dynamics of microtubules equation using the methods of first integral and (G’/G) expansion, Asian-Eur. J. Math., 16, 01, Article 2350007 pp. (2023)
[12] Peng, W. Q.; Chen, Y., N-double poles solutions for nonlocal Hirota equation with nonzero boundary conditions using Riemann-Hilbert method and PINN algorithm, Phys. D, Nonlinear Phenom., 435, Article 133274 pp. (2022) · Zbl 1491.35307
[13] Younas, U.; Sulaiman, T. A.; Ren, J., On the collision phenomena to the \((3 + 1)\)-dimensional generalized nonlinear evolution equation: applications in the shallow water waves, Eur. Phys. J. Plus, 137, 10, 1-2 (2022)
[14] Ismael, H. F.; Sulaiman, T. A.; Nabi, H. R.; Shah, N. A.; Botmart, T., Multiple soliton, M-lump and interaction solutions to the \((3 + 1)\)-dimensional soliton equation, Results Phys., Article 106220 pp. (2023)
[15] Atas, S. S.; Ali, K. K.; Sulaiman, T. A.; Bulut, H., Dynamic behavior of optical solitons to the Coupled-Higgs equation through an efficient method, Int. J. Mod. Phys. B, Article 2350144 pp. (2022)
[16] Younas, U.; Sulaiman, T. A.; Ren, J., Dynamics of optical pulses in fiber optics with stimulated Raman scattering effect, Int. J. Mod. Phys. B, Article 2350080 pp. (2022)
[17] Yan, X.; Liu, J.; Yang, J.; Xin, X., Lie symmetry analysis, optimal system and exact solutions for variable-coefficients \((2 + 1)\)-dimensional dissipative long-wave system, J. Math. Anal. Appl., 518, 1, Article 126671 pp. (2023) · Zbl 1498.35450
[18] Ekici, M., Stationary optical solitons with Kudryashov’s quintuple power law nonlinearity by extended Jacobi’s elliptic function expansion, J. Nonlinear Opt. Phys. Mater., 32, 01, Article 2350008 pp. (2023)
[19] Younas, U.; Baber, M. Z.; Yasin, M. W.; Sulaiman, T. A.; Ren, J., The generalized higher-order nonlinear Schrödinger equation: optical solitons and other solutions in fiber optics, Int. J. Mod. Phys. B, Article 2350174 pp. (2022)
[20] Asjad, M. I.; Majid, S. Z.; Faridi, W. A.; Eldin, S. M., Sensitive analysis of soliton solutions of nonlinear Landau-Ginzburg-Higgs equation with generalized projective Riccati method, AIMS Math., 8, 5, 10210-10227 (2023)
[21] Fatema, K.; Islam, M. E.; Akhter, M.; Akbar, M. A.; Inc, M., Transcendental surface wave to the symmetric regularized long-wave equation, Phys. Lett. A, 439, Article 128123 pp. (2022) · Zbl 1496.35014
[22] Kumar, D.; Kaplan, M.; Haque, M. R.; Osman, M. S.; Baleanu, D., A variety of novel exact solutions for different models with the conformable derivative in shallow water, Front. Phys., 8, 177 (2020)
[23] Sejdic, E.; Djurovic, I.; Stankovic, L., Fractional Fourier transform as a signal processing tool: an overview of recent developments, Signal Process., 91, 6, 1351-1369 (2011) · Zbl 1220.94024
[24] Lohmann, A. W.; Mendlovic, D.; Zalevsky, Z.; Dorsch, R. G., Some important fractional transformations for signal processing, Opt. Commun., 125, 1-3, 18-20 (1996)
[25] Gu, Y.; Li, G.; Xu, X.; Song, X.; Zhong, H., Solution of a new high-performance fractional-order Lorenz system and its dynamics analysis, Nonlinear Dyn., 1-25 (2023)
[26] Oraby, T.; Suazo, E.; Arrubla, H., Probabilistic solutions of fractional differential and partial differential equations and their Monte Carlo simulations, Chaos Solitons Fractals, 166, Article 112901 pp. (2023)
[27] Liu, F.; Burrage, K., Novel techniques in parameter estimation for fractional dynamical models arising from biological systems, Comput. Math. Appl., 62, 3, 822-833 (2011) · Zbl 1228.93114
[28] Ahmed, E.; Elgazzar, A. S., On fractional order differential equations model for nonlocal epidemics, Phys. A, Stat. Mech. Appl., 379, 2, 607-614 (2007)
[29] Yasmin, H.; Abu Hammad, M. M.; Shah, R.; Alotaibi, B. M.; Ismaeel, S. M.; El-Tantawy, S. A., On the solutions of the fractional-order Sawada-Kotera-Ito equation and modeling nonlinear structures in fluid mediums, Symmetry, 15, 3, 605 (2023)
[30] Al Khawaja, U.; Al-Refai, M.; Shchedrin, G.; Carr, L. D., High-accuracy power series solutions with arbitrarily large radius of convergence for the fractional nonlinear Schrödinger-type equations, J. Phys. A, Math. Theor., 51, 23, Article 235201 pp. (2018) · Zbl 1397.35280
[31] Qiu, Y.; Malomed, B. A.; Mihalache, D.; Zhu, X.; Peng, X.; He, Y., Stabilization of single- and multi-peak solitons in the fractional nonlinear Schrödinger equation with a trapping potential, Chaos Solitons Fractals, 140, Article 110222 pp. (2020) · Zbl 1495.35199
[32] Atangana, A.; Baleanu, D., New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20, 763-769 (2016)
[33] Atangana, A.; Koca, I., Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fractals, 89, 447-454 (2016) · Zbl 1360.34150
[34] Abdou, M. A.; Owyed, S.; Abdel-Aty, A.; Raffah, B. M.; Abdel-Khalek, S., Optical soliton solutions for a space-time fractional perturbed nonlinear Schrödinger equation arising in quantum physics, Results Phys., 16, Article 102895 pp. (2020)
[35] Hussain, A.; Jhangeer, A.; Tahir, S.; Chu, Y. M.; Khan, I., Dynamical behavior of fractional Chen-Lee-Liu equation in optical fibers with beta derivatives, Results Phys., 18, Article 103208 pp. (2020)
[36] Wang, S. N.; Hu, J., Grammian solutions for a \((2 + 1)\)-dimensional integrable coupled modified Date-Jimbo-Kashiwara-Miwa equation, Mod. Phys. Lett. B, 33, 10, Article 1950119 pp. (2019)
[37] Yuan, Y. Q.; Tian, B.; Sun, W. R.; Chai, J.; Liu, L., Wronskian and Grammian solutions for a \((2 + 1)\)-dimensional Date-Jimbo-Kashiwara-Miwa equation, Comput. Math. Appl., 74, 4, 873-879 (2017) · Zbl 1387.35539
[38] Ali, K. K.; Mehanna, M. S.; Wazwaz, A. M., Analytical and numerical treatment to the \((2 + 1)\)-dimensional Date-Jimbo-Kashiwara-Miwa equation, Nonlinear Eng., 10, 1, 187-200 (2021)
[39] Pang, J.; Bian, C. Q.; Chao, L., A new auxiliary equation method for finding travelling wave solutions to KdV equation, Appl. Math. Mech., 31, 929-936 (2010) · Zbl 1202.37088
[40] Raza, N.; Jhangeer, A.; Rahman, R. U.; Butt, A. R.; Chu, Y. M., Sensitive visualization of the fractional Wazwaz-Benjamin-Bona-Mahony equation with fractional derivatives: a comparative analysis, Results Phys., Article 104171 pp. (2021)
[41] Pan, J. T.; Chen, W. Z., A new auxiliary equation method and its application to the Sharma-Tasso-Olver model, Phys. Lett. A, 373, 35, 3118-3121 (2009) · Zbl 1233.34004
[42] Guo, F.; Lin, J., Interaction solutions between lump and stripe soliton to the \((2 + 1)\)-dimensional Date-Jimbo-Kashiwara-Miwa equation, Nonlinear Dyn., 96, 1233-1241 (2019) · Zbl 1437.37092
[43] Kumar, A.; Ilhan, E.; Ciancio, A.; Yel, G.; Baskonus, H. M., Extractions of some new travelling wave solutions to the conformable Date-Jimbo-Kashiwara-Miwa equation, AIMS Math., 6, 5, 4238-4264 (2021) · Zbl 1484.35385
[44] Atangana, A.; Baleanu, D.; Alsaedi, A., Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal, Open Phys., 14, 1, 145-149 (2016)
[45] Hussain, A.; Jhangeer, A.; Abbas, N.; Khan, I.; Sherif, E. S.M., Optical solitons of fractional complex Ginzburg-Landau equation with conformable, beta, and M-truncated derivatives: a comparative study, Adv. Differ. Equ., 2020, 1-19 (2020) · Zbl 1486.35427
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.