×

Overgroups of subsystem subgroups in exceptional groups: inside a sandwich. (English. Russian original) Zbl 1522.20192

St. Petersbg. Math. J. 34, No. 4, 591-609 (2023); translation from Algebra Anal. 34, No. 4, 47-73 (2022).
Summary: This paper supplements a previous paper by the author [St. Petersbg. Math. J. 32, No. 6, 1011–1031 (2021; Zbl 07436571); translation from Algebra Anal. 32, No. 6, 72–100 (2021)], where the overgroup lattice of the elementary subsystem subgroup \(E(\Delta ,R)\) of the Chevalley group \(G(\Phi ,R)\) for a sufficiently large root subsystem \(\Delta\) was studied. Currently, the subject-matter is the relationship between the elementary subgroup \(\widehat{E}(\sigma )\) given by a net of ideals \(\sigma\) of the ring \(R\), and the stabilizer \(S(\sigma )\) of the corresponding Lie subalgebra of the Chevalley algebra. In particular, it is proved that under a certain condition the subgroup \(\widehat{E}(\sigma )\) is normal in \(S(\sigma )\), and some properties of the corresponding quotient group are established.

MSC:

20G15 Linear algebraic groups over arbitrary fields

Citations:

Zbl 07436571

References:

[1] Z. I. Borevich and N. A. Vavilov, Subgroups of the general linear group over a semilocal ring that contain a group of diagonal matrices, Tr. Mat. Inst. Steklov. 148 (1978), 43-57; English transl., Proc. Steklov Inst. Math. 148 (1980), 41-54. 558939 · Zbl 0453.20040
[2] \bysame , Arrangement of subgroups in the general linear group over a commutative ring, Tr. Mat. Inst. Steklov. 165 (1984), 24-42; English transl., Proc. Steklov Inst. Math. 165 (1985), 27-46. 752930 · Zbl 0653.20048
[3] N. Bourbaki, Elements de mathematique. Fc. XXXIV. Groupes et algebres de Lie. Ch. IV-VI, Actualites Sci. Industr., No. 1337, Hermann, Paris, 1968. 0240238 · Zbl 0186.33001
[4] N. A. Vavilov, Subgroups of split orthogonal groups over a ring, Sibirsk. Mat. Zh. 29 (1988), no. 4, 31-43; English transl., Sib. Math. J. 29 (1988), no. 4, 537-547. 969101 · Zbl 0694.20032
[5] \bysame , Subgroups of splittable classical groups, Tr. Mat. Inst. Steklov. 183 (1990), 29-42; English transl., Proc. Steklov Inst. Math. 183 (1991), no. 4, 27-41. 1092012 · Zbl 0723.20028
[6] N. A. Vavilov and E. B. Plotkin, Net subgroups of Chevalley groups. II. Gaussian decomposition, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 114 (1982), 62-76; English transl., J. Math. Sci. (N.Y.) 27 (1984), no. 4, 2874-2885. 669560 · Zbl 0548.20035
[7] N. A. Vavilov and A. V. Stepanov, Overgroups of semisimple groups, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser. 2008, no. 3, 51-95. (Russian) 2473730 · Zbl 1322.20040
[8] N. A. Vavilov and A. V. Schegolev, Overgroups of subsystem subgroups in exceptional groups: levels, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 400 (2012), 70-126; English transl., J. Math. Sci. (N.Y.) 192 (2013), no. 2, 164-195. 3029566 · Zbl 1301.20043
[9] P. B. Gvozdevskii, Overgroups of Levi subgroups. I. The case of an abelian unipotent radical, Algebra i Analiz 31 (2019), no. 6, 79-121; English transl., St. Petersburg Math. J. 31 (2020), no. 6, 969-999. 4039348 · Zbl 1484.20081
[10] \bysame , Overgroups of subsystem subgroups in exceptional groups: \(2A_1\)-proof, Algebra i Analiz 32 (2020), no. 6, 72-100; English transl., St. Petersburg Math. J. 32 (2021), no. 6, 1011-1031. 4219492 · Zbl 07436571
[11] V. I. Kopeiko, Stabilization of symplectic groups over a ring of polynomials, Mat. Sb. 106 (1978), no. 1, 94-107; English transl., Sb. Math. 34 (1978), no. 5, 655-669. 497932 · Zbl 0414.20037
[12] J. E. Humphreys, Algebraic groups and modular Lie algebras, Mem. Amer. Math. Soc., vol. 71, Amer. Math. Soc., Providence, R.I., 1967. 0217075 · Zbl 0173.03001
[13] A. V. Schegolev, Overgroups of an elementary block-diagonal subgroup of the classical symplectic group over an arbitrary commutative ring, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 443 (2016), 222-233; English transl., J. Math. Sci. (N.Y.) 222 (2017), no. 4, 516-523. 3507773 · Zbl 1393.20024
[14] \bysame , Overgroups of an elementary block-diagonal subgroup of the classical symplectic group over an arbitrary commutative ring, Algebra i Analiz 30 (2018), no. 6, 147-199; English transl., St. Petersburg Math. J.30 (2019), no. 6, 1007-1041. 3882542 · Zbl 1499.20120
[15] E. Abe and K. Suzuki, On normal subgroups of Chevalley groups over commutative rings, Tohoku Math. J. 28 (1976), no. 2, 185-198. 439947 · Zbl 0336.20033
[16] QA. Bak, Nonabelian K-theory\textup : The nilpotent class of \(K_1\) and general stability, K-Theory 4 (1991), 363-397. 1115826 · Zbl 0741.19001
[17] P. M. Cohn, On the structure of the \(GL_2\) of a ring, Inst. Hautes \'Etudes Sci. Publ. Math. 30 (1966), 5-53. 207856
[18] R. Hazrat and N. Vavilov, \(K_1\) of Chevalley groups are nilpotent, J. Pure Appl. pl. Algebra 179 (2003), no. 1-2, 99-116. 1958377 · Zbl 1012.19001
[19] D. A. Roozemond, Algorithms for Lie algebras of algebraic groups, Ph.D. thesis, Technische Univ., Eindhoven, 2010.
[20] A. V. Shchegolev, Overgroups of elementary block-diagonal subgroups in even unitary groups over quasi-finite rings, Ph.D. thesis, Fak. Math. Univ., Bielefeld, 2015. · Zbl 1393.20024
[21] A. V. Stepanov, Structure of Chevalley groups over rings via universal localization, J. Algebra 450 (2016), 522-548. 3449702 · Zbl 1337.20057
[22] A. V. Stepanov and N. A. Vavilov, Decomposition of transvections\textup : Theme with variations, K-Theory 19 (2000), no. 2, 109-153. 1740757 · Zbl 0944.20031
[23] G. Taddei, Normalit\'e des groupes \'el\'ementaire dans les groupes de Chevalley sur un anneau, Applications of algebraic \(K\)-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 693-710. 862660 · Zbl 0602.20040
[24] L. N. Vaserstein, On normal subgroups of Chevalley groups over commutative rings, Tohoku Math. J. 38 (1986), no. 2, 219-230. 843808 · Zbl 0578.20036
[25] N. A. Vavilov, Intermediate subgroups in Chevalley groups, Groups of Lie type and their geometries (Como, 1993), London Math. Soc. Lecture Note Ser., vol. 207, Cambridge Univ. Press, Cambridge, 1995, pp. 233-280. 1320525 · Zbl 0879.20020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.