×

Right-angled Coxeter groups with totally disconnected Morse boundaries. (English) Zbl 1522.20174

The Davis complex is a simplicial complex and metric space associated with any Coxeter group, generalizing the construction of Weyl chambers for finite Weyl groups or the standard apartment of the Bruhat-Tits building of an affine Weyl group. From the view of metric geometry, the Davis complexes provide an useful family of \(\mathrm{CAT}(0)\)-spaces.
The Morse boundary is an invariant of \(\mathrm{CAT}(0)\) metric spaces under quasi-isometry. As a subspace of the visual boundary, the Morse boundary has a clear geometric interpretation. Moreover, at least the visual boundary of the Davis complex has proved to be very useful for the structure theory of Coxeter groups (cf.the works of Timothée Marquis).
In this paper, the topological properties of the Morse boundary are studied for those Coxeter groups which are right angled, i.e.whose Coxeter graph only contains \(\infty\)-labelled edges. They show that in many cases, the topology of the Morse boundary of a right-angled Coxeter group can be described in terms of the topology of the Morse boundary of certain proper parabolic subgroups. Iterating this procedure, they produce a large number of examples of right-angled Coxeter groups whose Morse boundary is totally disconnected.

MSC:

20F65 Geometric group theory
20F67 Hyperbolic groups and nonpositively curved groups
20F55 Reflection and Coxeter groups (group-theoretic aspects)
57M07 Topological methods in group theory
57M15 Relations of low-dimensional topology with graph theory

References:

[1] Behrstock, J.: A counterexample to questions about boundaries, stability, and commensurability. In: Beyond Hyperbolicity Bd. 454, S. 151-159. Cambridge Univ. Press, Cambridge (2019) · Zbl 1514.20137
[2] Behrstock, J.; Falgas-Ravry, V.; Hagen, MF; Susse, T., Global structural properties of random graphs, Int. Math. Res. Not. IMRN, 5, 1411-1441 (2018) · Zbl 1404.05188 · doi:10.1093/imrn/rnw287
[3] Ben-Zvi, M.: Boundaries of groups with isolated flats are path connected. arXiv:1909.12360 (2019)
[4] Ben-Zvi, M.; Kropholler, R., Right-angled Artin group boundaries, Proc. Am. Math. Soc., 149, 2, 555-567 (2021) · Zbl 1535.20204 · doi:10.1090/proc/15261
[5] Bridson, M. R., Haefliger, A.: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Bd. 319: Metric Spaces of Non-positive Curvature, xxii+643 S. Springer, Berlin. doi:10.1007/978-3-662-12494-9 · Zbl 0988.53001
[6] Caprace, P-E; Sageev, M., Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal., 21, 4, 851-891 (2011) · Zbl 1266.20054 · doi:10.1007/s00039-011-0126-7
[7] Cashen, CH, Quasi-isometries need not induce homeomorphisms of contracting boundaries with the Gromov product topology, Anal. Geom. Metr. Spaces, 4, 1, 278-281 (2016) · Zbl 1377.20030 · doi:10.1515/agms-2016-0011
[8] Cashen, CH; Mackay, JM, A metrizable topology on the contracting boundary of a group, Trans. Am. Math. Soc., 372, 3, 1555-1600 (2019) · Zbl 1506.20079 · doi:10.1090/tran/7544
[9] Charney, R.; Cordes, M.; Sisto, A., Complete topological descriptions of certain Morse boundaries, Groups Geom. Dyn., 17, 1, 157-184 (2023) · Zbl 1512.20130 · doi:10.4171/ggd/669
[10] Charney, R.; Sultan, H., Contracting boundaries of \({\rm CAT} (0)\) spaces, J. Topol., 8, 1, 93-117 (2015) · Zbl 1367.20043 · doi:10.1112/jtopol/jtu017
[11] Cordes, M., Morse boundaries of proper geodesic metric spaces, Groups Geom. Dyn., 11, 4, 1281-1306 (2017) · Zbl 1423.20043 · doi:10.4171/GGD/429
[12] Croke, CB; Kleiner, B., The geodesic flow of a nonpositively curved graph manifold, Geom. Funct. Anal., 12, 3, 479-545 (2002) · Zbl 1035.53116 · doi:10.1007/s00039-002-8255-7
[13] Croke, CB; Kleiner, B., Spaces with nonpositive curvature and their ideal boundaries, J. Topol., 39, 3, 549-556 (2000) · Zbl 0959.53014 · doi:10.1016/S0040-9383(99)00016-6
[14] Dahmani, F.; Guirardel, V.; Osin, D., Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Am. Math. Soc., 245, 1156, 152 (2017) · Zbl 1396.20041 · doi:10.1090/memo/1156
[15] Dani, P.; Thomas, A., Divergence in right-angled Coxeter groups, Trans. Am. Math. Soc., 367, 5, 3549-3577 (2015) · Zbl 1368.20049 · doi:10.1090/S0002-9947-2014-06218-1
[16] Davis, M.W.: London Mathematical Society Monographs Series. Bd. 32: The Geometry and Topology of Coxeter Groups, , xvi+584 S. Princeton University Press, Princeton, NJ (2008) · Zbl 1142.20020
[17] Genevois, A., Hyperbolicities in CAT(0) cube complexes, Enseign. Math., 65, 1-2, 33-100 (2020) · Zbl 1472.20090 · doi:10.4171/lem/65-1/2-2
[18] Graeber, M.; Karrer, A.; Lazarovich, N.; Stark, E., Surprising circles in Morse boundaries of right-angled Coxeter groups, Topol. Appl., 294 (2021) · Zbl 1511.20160 · doi:10.1016/j.topol.2021.107645
[19] Gromov, M.: Hyperbolic groups. In: Essays in Group Theory Bd. 8, S. 75-263. Springer, New York, (1987) · Zbl 0634.20015
[20] Haglund, F.; Wise, DT, Special Cube Complexes, Geom. Funct. Anal., 17, 5, 1551-1620 (2008) · Zbl 1155.53025 · doi:10.1007/s00039-007-0629-4
[21] Incerti-Medici, M., Comparing topologies on the Morse boundary and quasi-isometry invariance, Geom. Dedicata, 212, 153-176 (2021) · Zbl 07348155 · doi:10.1007/s10711-020-00553-3
[22] Levcovitz, I., Divergence of CAT(0) cube complexes and Coxeter groups, Algebr. Geom. Topol., 18, 3, 1633-1673 (2018) · Zbl 1494.20062 · doi:10.2140/agt.2018.18.1633
[23] Mooney, C., Generalizing the Croke-Kleiner Construction, Topol. Appl., 157, 1168-1181 (2010) · Zbl 1235.57001 · doi:10.1016/j.topol.2010.02.007
[24] Munkres, JR, Topology, xvi+537 S (2000), Upper Saddle River, NJ: Prentice Hall Inc, Upper Saddle River, NJ · Zbl 0951.54001
[25] Nguyen, HT; Tran, HC, On the coarse geometry of certain right-angled Coxeter groups, Algebr. Geom. Topol., 19, 6, 3075-3118 (2019) · Zbl 1515.20232 · doi:10.2140/agt.2019.19.3075
[26] Osin, D., Acylindrically hyperbolic groups, Trans. Am. Math. Soc., 368, 2, 851-888 (2016) · Zbl 1380.20048 · doi:10.1090/tran/6343
[27] Russell, J., Spriano, D., Tran, H.C.: Convexity in hierarchically hyperbolic spaces. accepted to Algebraic Geom. Topol., e-print available at: arXiv: 1809.09303 (2018)
[28] Sageev, M., Ends of group pairs and non-positively curved cube complexes, Proc. Lond. Math. Soc., 71, 3, 585-617 (1995) · Zbl 0861.20041 · doi:10.1112/plms/s3-71.3.585
[29] Sageev, M.: CAT(0) cube complexes and groups. In: Geometric group theory Bd. 21, , S. 7-54. Amer. Math. Soc., Providence, RI (2014) · Zbl 1440.20015
[30] Sisto, A., Quasi-convexity of hyperbolically embedded subgroups, Math. Z., 283, 3-4, 649-658 (2016) · Zbl 1380.20044 · doi:10.1007/s00209-016-1615-z
[31] Sisto, A., Contracting elements and random walks, J. Reine Angew. Math., 742, 79-114 (2018) · Zbl 1499.20108 · doi:10.1515/crelle-2015-0093
[32] Sultan, H., Hyperbolic quasi-geodesics in CAT(0) spaces, Geom. Dedicata, 169, 209-224 (2014) · Zbl 1330.20065 · doi:10.1007/s10711-013-9851-4
[33] Tran, HC, On strongly quasiconvex subgroups, Geom. Topol., 23, 3, 1173-1235 (2019) · Zbl 1515.20249 · doi:10.2140/gt.2019.23.1173
[34] West, DB, Introduction to Graph Theory (2001), Upper Saddle River, NJ: Prentice Hall, Upper Saddle River, NJ
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.