×

Secure state estimation for cyber-physical systems by unknown input observer with adaptive switching mechanism. (English) Zbl 1521.93189

Summary: A new state estimation method is proposed in this manuscript for a class of linear cyber-physical systems (CPSs) with sparse sensor attacks, unknown input and output disturbances. The sensor attack will make part of the measurement signal received by the remote observer inaccurate. In order to achieve the secure state estimation (SSE) for the investigated linear CPSs, an unknown input observer (UIO) with adaptive switching mechanism is designed. Inspired by the existing results, a set of sub-observers is designed which can exclude the influence of unknown input and output disturbances. To achieve switching between different sub-observers, the adaptive switching mechanism is designed according to the switching adversarial principle. Some parameters of the observer are obtained by designing a set of linear matrix inequalities (LMIs). The sufficient condition for the existence of the observer and the proof of its effectiveness are respectively given by theoretical analysis. Finally, the effectiveness of the proposed method is proved by two Matlab simulation experiments.

MSC:

93E10 Estimation and detection in stochastic control theory
93B70 Networked control
93C83 Control/observation systems involving computers (process control, etc.)
93C40 Adaptive control/observation systems

Software:

Matlab
Full Text: DOI

References:

[1] Hammad, E.; Farraj, A.; Kundur, D., On cyber-physical coupling and distributed control in smart grids, IEEE Trans. Ind. Inform., 15, 8, 4418-4429 (2019)
[2] Khaitan, S. K.; McCalley, J. D., Design techniques and applications of cyberphysical systems: a survey, IEEE Syst. J., 9, 2, 350-365 (2015)
[3] Hashemi, E.; Pirani, M.; Khajepour, A.; Fidan, B.; Chen, S.-k.; Litkouhi, B., Fault tolerant consensus for vehicle state estimation: a cyber-physical approach, IEEE Trans. Ind. Inform., 15, 9, 5129-5138 (2019)
[4] Jiang, Y.; Yin, S., Recursive total principle component regression based fault detection and its application to vehicular cyber-physical systems, IEEE Trans. Ind. Inform., 14, 4, 1415-1423 (2018)
[5] Langner, R., Stuxnet: dissecting a cyberwarfare weapon, IEEE Secur. Priv., 9, 3, 49-51 (2011)
[6] Lee, C.-H.; Chen, B.-K.; Chen, N.-M.; Liu, C.-W., Lessons learned from the blackout accident at a nuclear power plant in Taiwan, IEEE Trans. Power Deliv., 25, 4, 2726-2733 (2010)
[7] Conti, J. P., The day the samba stopped, Eng. Technol., 5, 4, 46-47 (2010)
[8] Mo, Y.; Sinopoli, B., On the performance degradation of cyber-physical systems under stealthy integrity attacks, IEEE Trans. Autom. Control, 61, 9, 2618-2624 (2016) · Zbl 1359.93257
[9] Shen, B.; Wang, Z.; Wang, D.; Li, Q., State-saturated recursive filter design for stochastic time-varying nonlinear complex networks under deception attacks, IEEE Trans. Neural Netw. Learn. Syst., 31, 10, 3788-3800 (2020)
[10] Ma, R.; Shi, P.; Wu, L., Dissipativity-based sliding-mode control of cyber-physical systems under denial-of-service attacks, IEEE Trans. Cybern., 51, 5, 2306-2318 (2021)
[11] Liu, Y.; Yang, G.-H., Resilient event-triggered distributed state estimation for nonlinear systems against dos attacks, IEEE Trans. Cybern., 52, 9, 9076-9089 (2022)
[12] Fawzi, H.; Tabuada, P.; Diggavi, S., Secure estimation and control for cyber-physical systems under adversarial attacks, IEEE Trans. Autom. Control, 59, 6, 1454-1467 (2014) · Zbl 1360.93201
[13] Candes, E.; Tao, T., Decoding by linear programming, IEEE Trans. Inf. Theory, 51, 12, 4203-4215 (2005) · Zbl 1264.94121
[14] Shoukry, Y.; Tabuada, P., Event-triggered state observers for sparse sensor noise/attacks, IEEE Trans. Autom. Control, 61, 8, 2079-2091 (2016) · Zbl 1359.93072
[15] Lu, A.-Y.; Yang, G.-H., Switched projected gradient descent algorithms for secure state estimation under sparse sensor attacks, Automatica, 103, 503-514 (2019) · Zbl 1415.93253
[16] Shoukry, Y.; Chong, M.; Wakaiki, M.; Nuzzo, P.; Sangiovanni-Vincentelli, A. L.; Seshia, S. A.; Hespanha, J. P.; Tabuada, P., Smt-based observer design for cyber-physical systems under sensor attacks, (2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS) (2016)), 1-10
[17] Shoukry, Y.; Nuzzo, P.; Puggelli, A.; Sangiovanni-Vincentelli, A. L.; Seshia, S. A.; Tabuada, P., Secure state estimation for cyber-physical systems under sensor attacks: a satisfiability modulo theory approach, IEEE Trans. Autom. Control, 62, 10, 4917-4932 (2017) · Zbl 1390.93532
[18] An, L.; Yang, G.-H., Secure state estimation against sparse sensor attacks with adaptive switching mechanism, IEEE Trans. Autom. Control, 63, 8, 2596-2603 (2018) · Zbl 1423.93165
[19] Lu, A.-Y.; Yang, G.-H., Secure switched observers for cyber-physical systems under sparse sensor attacks: a set cover approach, IEEE Trans. Autom. Control, 64, 9, 3949-3955 (2019) · Zbl 1482.93092
[20] Ma, R.; Shi, P., Secure state estimation for cyber-physical systems under sparse data injection attacks: a switched counteraction approach, Int. J. Control, 95, 4, 963-974 (2022) · Zbl 1485.93569
[21] Lu, A.-Y.; Yang, G.-H., Secure state estimation for cyber-physical systems under sparse sensor attacks via a switched Luenberger observer, Inf. Sci., 417, 454-464 (2017) · Zbl 1447.93346
[22] Ao, W.; Song, Y.; Wen, C.; Lai, J., Finite time attack detection and supervised secure state estimation for cpss with malicious adversaries, Inf. Sci., 451-452, 67-82 (2018) · Zbl 1448.93222
[23] Showkatbakhsh, M.; Shoukry, Y.; Diggavi, S. N.; Tabuada, P., Securing state reconstruction under sensor and actuator attacks: theory and design, Automatica, 116, Article 108920 pp. (2020) · Zbl 1440.93100
[24] Valcher, M., State observers for discrete-time linear systems with unknown inputs, IEEE Trans. Autom. Control, 44, 2, 397-401 (1999) · Zbl 0958.93018
[25] Alenezi, B.; Zhang, M.; Hui, S.; Żak, S. H., Simultaneous estimation of the state, unknown input, and output disturbance in discrete-time linear systems, IEEE Trans. Autom. Control, 66, 12, 6115-6122 (2021) · Zbl 1536.93859
[26] Yang, T.; Murguia, C.; Kuijper, M.; Nešić, D., An unknown input multiobserver approach for estimation and control under adversarial attacks, IEEE Trans. Control Netw. Syst., 8, 1, 475-486 (2021) · Zbl 07588110
[27] Na, G.; Seo, D.; Eun, Y., Methods of state estimation resilient against sensor attacks and robust against exogenous disturbances, (2017 IEEE Conference on Control Technology and Applications (CCTA) (2017)), 1300-1305
[28] Ma, R.; Shi, P.; Wu, L., Sparse false injection attacks reconstruction via descriptor sliding mode observers, IEEE Trans. Autom. Control, 66, 11, 5369-5376 (2021) · Zbl 1536.93332
[29] Yang, H.; Yin, S.; Han, H.; Sun, H., Sparse actuator and sensor attacks reconstruction for linear cyber-physical systems with sliding mode observer, IEEE Trans. Ind. Inform., 18, 6, 3873-3884 (2022)
[30] Li, L.; Wang, W.; Ma, Q.; Pan, K.; Liu, X.; Lin, L.; Li, J., Cyber attack estimation and detection for cyber-physical power systems, Appl. Math. Comput., 400, Article 126056 pp. (2021) · Zbl 1508.94040
[31] Lin, H.; Lam, J.; Wang, Z., Secure state estimation for systems under mixed cyber-attacks: security and performance analysis, Inf. Sci., 546, 943-960 (2021) · Zbl 1478.93680
[32] Hu, X.; Shen, Y.; Pedrycz, W.; Li, Y.; Wu, G., Granular fuzzy rule-based modeling with incomplete data representation, IEEE Trans. Cybern., 52, 7, 6420-6433 (2022)
[33] Szedlak-Stinean, A.-I.; Precup, R.-E.; Petriu, E. M.; Roman, R.-C.; Hedrea, E.-L.; Bojan-Dragos, C.-A., Extended Kalman filter and Takagi-Sugeno fuzzy observer for a strip winding system, Expert Syst. Appl., 208, Article 118215 pp. (2022)
[34] Hedrea, E.-L.; Precup, R.-E.; Roman, R.-C.; Petriu, E. M., Tensor product-based model transformation approach to tower crane systems modeling, Asian J. Control, 23, 3, 1313-1323 (2021) · Zbl 07886761
[35] Hu, X.; Shen, Y.; Pedrycz, W.; Wang, X.; Gacek, A.; Liu, B., Identification of fuzzy rule-based models with collaborative fuzzy clustering, IEEE Trans. Cybern., 52, 7, 6406-6419 (2022)
[36] Kwon, C.; Hwang, I., Cyber attack mitigation for cyber-physical systems: hybrid system approach to controller design, IET Control Theory Appl., 10, 7, 731-741 (2016)
[37] Silverman, L. M., Discrete Riccati equations: alternative algorithms, asymptotic properties, and system theory interpretations, Control Dyn. Syst., 12, 313-386 (1976) · Zbl 0362.49014
[38] Watanabe, K.; Himmelblau, D. M., Fault diagnosis in nonlinear chemical processes. Part II. Application to a chemical reactor, AIChE J., 29, 2, 250-261 (1983)
[39] Murguia, C.; Ruths, J., On model-based detectors for linear time-invariant stochastic systems under sensor attacks, IET Control Theory Appl., 13, 8, 1051-1061 (2019) · Zbl 1432.93321
[40] Lee, J.-W.; Dullerud, G. E., Uniform stabilization of discrete-time switched and Markovian jump linear systems, Automatica, 42, 2, 205-218 (2006) · Zbl 1105.93049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.