×

Multi-hop quantum teleportation of an arbitrary two-qubit state based on hierarchical simultaneous entanglement swapping. (English) Zbl 1519.81135

Summary: Combined with hierarchy simultaneous entanglement swapping, the scheme of the multi-hop quantum teleportation (QT) is proposed by using multi-pair Bell states. The scheme consists of two levels based on simultaneous entanglement swapping, namely Level-1 and Level-2. The former realizes simultaneous entanglement swapping of the inner segment, while the latter completes simultaneous entanglement swapping of the inter segment. Besides, the effect of four different types of noise (phase-damping, amplitude-damping, phase-flip, and bit-flip noise) on our scheme is analyzed by calculating the fidelity and concurrence. The results indicate that the fidelity and concurrence are related to the amplitude parameter, decoherence rate and number of nodes. Furthermore, compared with the scheme of the multi-hop QT adopting simultaneous entanglement swapping, our scheme can greatly reduce classical communication cost, and shows that the optimal classical communication cost can be obtained by selecting different segmentation methods.

MSC:

81P48 LOCC, teleportation, dense coding, remote state operations, distillation
60H50 Regularization by noise
81P47 Quantum channels, fidelity
81P42 Entanglement measures, concurrencies, separability criteria
81P65 Quantum gates
81S22 Open systems, reduced dynamics, master equations, decoherence
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
91B32 Resource and cost allocation (including fair division, apportionment, etc.)
Full Text: DOI

References:

[1] Lindblad, G., Completely positive maps and entropy inequalities, Commun. Math. Phys., 40, 147-51 (1975) · Zbl 0298.46062 · doi:10.1007/BF01609396
[2] Vidal, G.; Werner, R. F., Computable measure of entanglement, Phys. Rev. A, 65 (2002) · doi:10.1103/PhysRevA.65.032314
[3] Wootters, W. K., Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett., 80, 2245-8 (1998) · Zbl 1368.81047 · doi:10.1103/PhysRevLett.80.2245
[4] Bennett, C. H.; DiVincenzo, D. P.; Smolin, J. A.; Wootters, W. K., Mixed-state entanglement and quantum error correction, Phys. Rev. A, 54, 3824-51 (1996) · Zbl 1371.81041 · doi:10.1103/PhysRevA.54.3824
[5] Wootters, W. K., Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett., 80, 2245-8 (1998) · Zbl 1368.81047 · doi:10.1103/PhysRevLett.80.2245
[6] Bennett, C. H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W. K., Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 70, 1895 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[7] Ekert, A. K., Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett., 67, 413-18 (1991) · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[8] Raussendorf, R.; Briegel, H. J., A one-way quantum computer, Phys. Rev. Lett., 86, 5188 (2001) · doi:10.1103/PhysRevLett.86.5188
[9] Shor, P. W., Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A, 52, R2493 (1995) · doi:10.1103/PhysRevA.52.R2493
[10] Bennett, C. H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W. K., Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 70, 1895-9 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[11] Karlsson, A.; Bourennane, M., Quantum teleportation using three-particle entanglement, Phys. Rev. A, 58, 4394-400 (1998) · doi:10.1103/PhysRevA.58.4394
[12] Espoukeh, P.; Pedram, P., Quantum teleportation through noisy channels with multi-qubit GHZ states, Quant. Inf. Process., 13, 1789-1811 (2014) · Zbl 1306.81016 · doi:10.1007/s11128-014-0766-2
[13] Du, Z.; Li, X.; Liu, X., Bidirectional quantum teleportation with GHZ states and EPR pairs via entanglement swapping, Int. J. Theor. Phys., 59, 622-31 (2020) · Zbl 1433.81040 · doi:10.1007/s10773-019-04355-6
[14] Joo, J.; Park, Y. J.; Oh, S.; Kim, J., Quantum teleportation via a W state, New J. Phys., 5, 136 (2003) · doi:10.1088/1367-2630/5/1/136
[15] Agrawal, P.; Pati, A., Perfect teleportation and superdense coding with W states, Phys. Rev. A, 74 (2006) · doi:10.1103/PhysRevA.74.062320
[16] Harraz, S.; Zhang, J. Y.; Cong, S., High-fidelity quantum teleportation with W states through noisy channels (2022)
[17] Fang, S.; Jiang, M., Bidirectional and asymmetric controlled quantum information transmission via five-qubit brown state, Int. J. Theor. Phys., 56, 1530-6 (2017) · Zbl 1366.81089 · doi:10.1007/s10773-017-3292-z
[18] Anagha, M.; Mohan, A.; Muruganandan, T.; Behera, B. K.; Panigrahi, P. K., A new scheme of quantum teleportation using highly entangled brown et al state: an IBM quantum experience, Quant. Inf. Process., 19, 1-12 (2020) · Zbl 1508.81367 · doi:10.1007/s11128-020-02635-3
[19] Dong, L.; Wang, J. X.; Li, Q. Y.; Dong, H. K.; Xiu, X. M.; Gao, Y. J., Teleportation of a general two-photon state employing a polarization-entangled χ state with nondemolition parity analyses, Quant. Inf. Process., 15, 2955-70 (2016) · Zbl 1348.81134 · doi:10.1007/s11128-016-1300-5
[20] Yu, X. T.; Zhang, Z. C.; Xu, J., Distributed wireless quantum communication networks with partially entangled pairs, Chin. Phys. B, 23 (2013) · doi:10.1088/1674-1056/23/1/010303
[21] Shi, L. H.; Yu, X. T.; Cai, X. F.; Gong, Y. X.; Zhang, Z. C., Quantum information transmission in the quantum wireless multihop network based on Werner state, Chin. Phys. B, 24 (2015) · doi:10.1088/1674-1056/24/5/050308
[22] Zou, Z. Z.; Yu, X. T.; Gong, Y. X.; Zhang, Z. C., Multihop teleportation of two-qubit state via the composite GHZ-Bell channe, Phys. Lett. A, 381, 76-81 (2017) · Zbl 1361.81035 · doi:10.1016/j.physleta.2016.10.048
[23] Wang, K.; Yu, X. T.; Lu, S. L.; Gong, Y. X., Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation, Phys. Rev. A, 89 (2014) · doi:10.1103/PhysRevA.89.022329
[24] Yang, G.; Xing, L.; Nie, M.; Liu, Y. H.; Zhang, M. L., Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states, Chin. Phys. B, 30 (2021) · doi:10.1088/1674-1056/abcf3d
[25] Xiong, P. Y.; Yu, X. T.; Zhang, Z. C.; Zhan, H. T.; Hua, J. Y., Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state, Front. Phys., 12, 1-10 (2017) · doi:10.1007/s11467-016-0617-y
[26] Gao, X. Q.; Zhang, Z. C.; Sheng, B., Multi-hop teleportation in a quantum network based on mesh topology, Front. Phys., 13, 1-7 (2018) · doi:10.1007/s11467-018-0766-2
[27] Kumar, D.; Pandey, P. N., Effect of noise on quantum teleportation, Phys. Rev. A, 68 (2003) · doi:10.1103/PhysRevA.68.012317
[28] Sadeghi-Zadeh, M. S.; Houshmand, M.; Aghababa, H.; Kochakzadeh, M. H.; Zarmehi, F., Bidirectional quantum teleportation of an arbitrary number of qubits over noisy channel, Quant. Inf. Process., 18, 1-19 (2019) · Zbl 1508.81734 · doi:10.1007/s11128-019-2456-6
[29] Zhou, R. G.; Qian, C.; Xu, R., A novel protocol for bidirectional controlled quantum teleportation of two-qubit states via seven-qubit entangled state in noisy environment, Int. J. Theor. Phys., 59, 134-48 (2020) · Zbl 1433.81048 · doi:10.1007/s10773-019-04302-5
[30] Fortes, R.; Rigolin, G., Fighting noise with noise in realistic quantum teleportation, Phys. Rev. A, 92 (2015) · doi:10.1103/PhysRevA.92.012338
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.