×

A survey on parameter identification, state estimation and data analytics for lateral flow immunoassay: from systems science perspective. (English) Zbl 1518.92076

Summary: Lateral flow immunoassay (LFIA), as a well-known point-of-care testing (POCT) technique, is of vital significance in a variety of application scenarios due to the advantages of convenience and high efficiency. With rapid development of computational intelligence (CI), algorithms have played an important role in enhancing LFIA performance, and it is necessary to summary how algorithms can assist LFIA improvement for providing experiences. However, most existing works on LFIA are from biochemical field which pay more attention to material and reagent. Therefore, in this paper, a systematical survey is proposed to review works on applying mathematical tools to promote LFIA development. Particularly, a novel two-level taxonomy is designed for a better inspection, including LFIA-oriented mathematical modelling, CI-assisted post-processing and quantification in LFIA, and each level is further subdivided for in-depth understanding. In addition, from a higher viewpoint, outlooks of jointly developing POCT with other state-of-the-art techniques are presented from perspectives of implementation principle, technical approach and algorithm application. Moreover, this survey aims to highlight that applying CI methods is competent for boosting POCT development, so as to raise attentions from more areas like information science, extend deeper researches and inspire more interdisciplinary works.

MSC:

92C50 Medical applications (general)
92C42 Systems biology, networks
35Q92 PDEs in connection with biology, chemistry and other natural sciences
93E10 Estimation and detection in stochastic control theory
Full Text: DOI

References:

[1] Azuma, T.; Hui, Y.; Chen, O.; Wang, Y. L.; Chang, H., Thermometric lateral flow immunoassay with colored latex beads as reporters for COVID-19 testing, Scientific Reports, 12, 1, 782 (2022) · doi:10.1038/s41598-022-07963-1
[2] Berli, C. L. A.; Kler, P. A., A quantitative model for lateral flow assays, Microfluidics and Nanofluidics, 20, 104, 197 (2016) · doi:10.1007/s10404-016-1771-9
[3] Bheemavarapu, L.; Shah, M.; Joseph, J.; Sivaprakasam, M., IQVision: an image-based evaluation tool for quantitative lateral flow immunoassay kits, Biosensors-Basel, 11, 7, 211 (2021) · doi:10.3390/bios11070211
[4] Biswas, S.; Mitra, P.; Rao, K., Relation prediction of co-morbid diseases using knowledge graph completion, IEEE-ACM Transactions on Computational Biology and Bioinformatics, 18, 2, 708-717 (2021) · doi:10.1109/TCBB.2019.2927310
[5] Boehringer, H. R.; O’Farrell, B. J., Lateral flow assays in infectious disease diagnosis, Clinical Chemistry, 68, 1, 52-58 (2022) · doi:10.1093/clinchem/hvab194
[6] Butler, J.; de Cassan, S.; Turner, P.; Lennox, B.; Hayward, G.; Glogowska, M., Mental healthcare clinician engagement with point of care testing; a qualitative study, BMC Psychiatry, 21, 1, 1285 (2021) · doi:10.1186/s12888-021-03067-8
[7] Chand, R.; Mittal, N.; Srinivasan, S.; Rajabzadeh, A., Upconverting nanoparticle clustering based rapid quantitative detection of tetrahydrocannabinol (THC) on lateral-flow immunoassay, The Analyst, 146, 2, 574-580 (2021) · doi:10.1039/D0AN01850C
[8] Chen, X.; Ding, L.; Huang, X.; Xiong, Y., Tailoring noble metal nanoparticle designs to enable sensitive lateral flow immunoassay, Theranostics, 12, 2, 574-602 (2022) · doi:10.7150/thno.67184
[9] Choi, S.; Lee, J.; Choi, W.; Seo, J.; Choi, S., Nanomaterials for IoT sensing platforms and point-of-care applications in south Korea, Sensors, 22, 2, 610. (2022) · doi:10.3390/s22020610
[10] Chou, C.; Huang, T.; Hsieh, P.; Ho, N.; Chen, C.; Wu, K.; Tsai, T., Quantitative lateral flow immunoassay for rapid detection and monitoring of cerebrospinal fluid leakage following incidental durotomy, Analytica Chimica Acta, 1196, Article 339544 (2022) · doi:10.1016/j.aca.2022.339544
[11] Chowdhury, K., Joseph, J., & Sivaprakasam, M. (2015). Image based quantitative reader for lateral flow immunofluorescence assay. In 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 1223-1226).
[12] Chu, Z.; Fu, M.; Guo, J.; Wang, W.; Zhou, J.; Ma, X.; Guo, J., Magnetic resistance sensory system for the quantitative measurement of morphine, IEEE Transactions on Biomedical Circuits and Systems, 15, 1, 171-176 (2021) · doi:10.1109/TBCAS.2021.3060181
[13] Diefenbach, X.; Farasat, I.; Guetschow, E.; Welch, C.; Kennedy, R.; Sun, S.; Moore, J., Enabling biocatalysis by high-throughput protein engineering using droplet microfluidics coupled to mass spectrometry, ACS Omega, 3, 2, 1498-1508 (2018) · doi:10.1021/acsomega.7b01973
[14] Ding, D.; Han, Q.-L.; Wang, Z.; Ge, X., A survey on model-based distributed control and filtering for industrial cyber-physical systems, IEEE Transactions on Industrial Informatics, 15, 5, 2483-2499 (2019) · doi:10.1109/TII.9424
[15] Ding, D.; Wang, Z.; Han, Q.-L., A set-membership approach to event-triggered filtering for general nonlinear systems over sensor networks, IEEE Transactions on Automatic Control, 65, 4, 1792-1799 (2020) · Zbl 1533.93453 · doi:10.1109/TAC.9
[16] Dusny, C.; Lohse, M.; Reemtsma, T.; Schmid, A.; Lechtenfeld, O., Quantifying a biocatalytic product from a few living microbial cells using microfluidic cultivation coupled to FT-ICR-MS, Analytical Chemistry, 91, 11, 7012-7018 (2019) · doi:10.1021/acs.analchem.9b00978
[17] Feng, S.; Caire, R.; Cortazar, B.; Turan, M.; Wong, A.; Ozcan, A., Immunochromatographic diagnostic test analysis using google glass, ACS Nano, 8, 3, 3069-3079 (2014) · doi:10.1021/nn500614k
[18] Gao, Y.; Wei, J.; Mak, P.; Vai, M.; Du, M.; Pun, S., Development of a calibration strip for immunochromatographic assay detection systems, Sensors, 16, 7, 1007 (2016) · doi:10.3390/s16071007
[19] Gasperino, D.; Baughman, T.; Hsieh, H. V.; Bell, D.; Weigl, B. H., Improving lateral flow assay performance using computational modeling, Annual Review of Analytical Chemistry, 11, 1, 219-244 (2018) · doi:10.1146/anchem.2018.11.issue-1
[20] Guo, J.; Chen, S.; Guo, J.; Ma, X., Nanomaterial labels in lateral flow immunoassays for point-of-care-testing, Journal of Materials Science & Technology, 60, 90-104 (2021) · doi:10.1016/j.jmst.2020.06.003
[21] Guo, J.; Tian, S.; Liu, K.; Guo, J., IoT-enabled fluorescence sensor for quantitative KET detection and anti-drug situational awareness, IEEE Transactions on Nanobioscience, 20, 1, 2-8 (2021) · doi:10.1109/TNB.7728
[22] Guo, W.; Zhang, Y.; Hu, X.; Zhang, T.; Liang, M.; Yang, X.; Yang, H., Region growing algorithm combined with fast peak detection for segmenting colloidal gold immunochromatographic strip images, IEEE Access, 7 (2019) · doi:10.1109/Access.6287639
[23] Ha, N.; Raad, M.; Han, L.; Golini, A.; Petzold, C.; Northen, T., Faster, better, and cheaper: harnessing microfluidics and mass spectrometry for biotechnology, RSC Chemical Biology, 2, 5, 1331-1351 (2021) · doi:10.1039/D1CB00112D
[24] Hogan, A.; Blomqvist, E.; Cochez, M.; D’Amato, C.; de Melo, G.; Gutierrez, C.; Kirrane, S.; Gayo, J.; Navigli, R.; Neumaier, S.; Ngomo, A.; Polleres, A.; Rashid, S.; Rula, A.; Schmelzeisen, L.; Sequeda, J.; Staab, S.; Zimmermann, A., Knowledge graphs, ACM Computing Surveys, 54, 4, 1-37. (2021) · doi:10.1145/3447772
[25] Hou, Y.; Lv, C.; Guo, Y.; Ma, X.; Liu, W.; Jin, Y.; Li, B.; Yang, M.; Yao, S., Recent advances and applications in paper-based devices for point-of-care testing, Journal of Analysis and Testing, 1-27 (2022) · doi:10.1007/s41664-021-00204-w
[26] Hu, Q.; Wei, Q.; Zhang, P.; Li, S.; Xue, L.; Yang, R.; Wang, C.; Zhou, L., An up-converting phosphor technology-based lateral flow assay for point-of-collection detection of morphine and methamphetamine in saliva, The Analyst, 143, 19, 4646-4654 (2021) · doi:10.1039/C8AN00651B
[27] Issac, A.; Dutta, M.; Travieso, C., Automatic computer vision-based detection and quantitative analysis of indicative parameters for grading of diabetic retinopathy, Neural Computing & Applications, 32, 20, 15687-15697 (2020) · doi:10.1007/s00521-018-3443-z
[28] Jain, S.; Nehra, M.; Kumar, R.; Dilbaghi, N.; Hu, T.; Kumar, S.; Kaushik, A.; Li, C., Internet of medical things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases, Biosensors & Bioelectronics, 179, Article 113074 (2021) · doi:10.1016/j.bios.2021.113074
[29] Javani, A.; Javadi-Zarnaghi, F.; Rasaee, M. J., A multiplex protein-free lateral flow assay for detection of microRNAs based on unmodified molecular beacons, Analytical Biochemistry, 537, 5, 99-105 (2017) · doi:10.1016/j.ab.2017.09.005
[30] Kanakasabapathy, M.; Sadasivam, M.; Singh, A.; Preston, C.; Thirumalaraju, P.; Venkataraman, M.; Bormann, C.; Draz, M.; Petrozza, J.; Shafiee, H., An automated smartphone-based diagnostic assay for point-of-care semen analysis, Science Translational Medicine, 9, 382, 257 (2017) · doi:10.1126/scitranslmed.aai7863
[31] Kang, X.; Chen, Y.; Tian, Y.; Liu, M.; Sun, J.; Lang, M., New technologies for protein point-of-care testing, Progress in Biochemistry and Biophysics, 49, 1, 233-241 (2022) · doi:10.16476/j.pibb.2021.0209
[32] Kellner, M.; Koob, J.; Gootenberg, J.; Abudayyeh, O.; Zhang, F., SHERLOCK: nucleic acid detection with CRISPR nucleases, Nature Protocols, 14, 10, 2986-3012 (2019) · doi:10.1038/s41596-019-0210-2
[33] Kim, H.; Awofeso, O.; Choi, S.; Jung, Y.; Bae, E., Colorimetric analysis of saliva-alcohol test strips by smartphone-based instruments using machine-learning algorithms, Applied Optics, 56, 1, 84-92 (2017) · doi:10.1364/AO.56.000084
[34] Lee, I.; Passaro, S.; Ozturk, S.; Urena, J.; Wang, W., Intelligent fluorescence image analysis of giant unilamellar vesicles using convolutional neural network, BMC Bioinformatics, 23, 48 (2022) · doi:10.1186/s12859-022-04577-2
[35] Lei, Z.; Zhou, H.; Hu, W.; Liu, G.; Guan, S.; Feng, X., Toward a web-based digital twin thermal power plant, IEEE Transactions on Industrial Informatics, 18, 3, 1716-1725 (2021) · doi:10.1109/TII.2021.3086149
[36] Li, H.; Ying, Y.; Cao, Z.; Liu, G.; Wang, J., Research progress on rapid detection technology based on smartphone and lateral flow immunoassay, Chinese Journal of Analytical Chemistry, 50, 1, 1-11 (2022) · doi:10.1016/j.cjac.2021.11.002
[37] Li, X.; Cao, C.; Shi, Y.; Bai, W.; Gao, H.; Qiu, L.; Wang, C.; Gao, Y.; Zhang, S.; Xue, X.; Chen, L., A survey of data-driven and knowledge-aware explainable AI, IEEE Transactions on Knowledge and Data Engineering, 34, 1, 29-49 (2022) · doi:10.1109/TKDE.2020.2983930
[38] Li, X.; Jiang, K.; Wang, P., Research of quantitative analyzer for fluorescence immune chromatography strips, International Conference on Mechatronics, Robotics and Automation, 373-375, 1000-1006 (2013) · doi:10.4028/www.scientific.net/AMM.373-375.1000
[39] Li, Y.; Xie, H.; Wang, J.; Li, X.; Xiao, Z.; Xu, Z.; Lei, H.; Shen, X., Lateral flow immunochromatography assay for detection of furosemide in slimming health foods, Foods (Basel, Switzerland), 10, 9, 2041 (2021) · doi:10.3390/foods10092041
[40] Lienard-Mayor, T.; Taverna, M.; Descroix, S.; Mai, T., Droplet-interfacing strategies in microscale electrophoresis for sample treatment, separation and quantification: a review, Analytica Chimica Acta, 1143, 281-297 (2020) · doi:10.1016/j.aca.2020.09.008
[41] Liu, J.; Fan, Y.; Kong, Z.; Wang, Y.; Luo, J.; Xu, S.; Jin, H.; Cai, X., Smartphone-based rapid quantitative detection of luteinizing hormone using gold immunochromatographic strip, Sensors and Actuators B: Chemical, 259, 1, 1073-1081 (2018) · doi:10.1016/j.snb.2017.12.161
[42] Liu, J.; Zhou, H.; Tian, G.; Liu, X.; Jing, X., Digital twin-based process reuse and evaluation approach for smart process planning, International Journal of Advanced Manufacturing Technology, 100, 5-8, 1618-1634 (2019) · doi:10.1007/s00170-018-2748-5
[43] Liu, W.; Wang, Z.; Yuan, Y.; Zeng, N.; Hone, K.; Liu, X., A novel sigmoid-function-based adaptive weighted particle swarm optimizer, IEEE Transactions on Cybernetics, 51, 2, 1085-1093 (2021) · doi:10.1109/TCYB.6221036
[44] Liu, Z.; He, X.; Li, A.; Qu, Z.; Xu, F., A two-dimensional mathematical model for analyzing the effects of capture probe properties on the performance of lateral flow assays, The Analyst, 144, 18, 5394-5403 (2019) · doi:10.1039/C9AN00669A
[45] Liu, Z.; Hu, J.; Li, A.; Feng, S.; Qu, Z.; Xu, F., The effect of report particle properties on lateral flow assays: A mathematical model, Sensors and Actuators B: Chemical, 248, 699-707 (2017) · doi:10.1016/j.snb.2017.04.024
[46] Liu, Z.; Hua, Q.; Wang, J.; Liang, Z.; Li, J.; Wu, J.; Shen, X.; Lei, H.; Li, X., A smartphone-based dual detection mode device integrated with two lateral flow immunoassays for multiplex mycotoxins in cereals, Biosensors & Bioelectronics, 158, Article 112178 (2020) · doi:10.1016/j.bios.2020.112178
[47] Liu, Z.; Qu, Z.; Tang, R.; He, X.; Yang, H.; Bai, D.; Xu, F., An improved detection limit and working range of lateral flow assays based on a mathematical model, The Analyst, 143, 12, 2775-2783 (2018) · doi:10.1039/C8AN00179K
[48] Lu, J.; Wu, Z.; Liu, B.; Wang, C.; Wang, Q.; Zhang, L.; Wang, Z.; Chen, C.; Fu, Y.; Li, C.; Li, T., A time-resolved fluorescence lateral flow immunoassay for rapid and quantitative serodiagnosis of Brucella infection in humans, Journal of Pharmaceutical and Biomedical Analysis, 200, Article 114071 (2021) · doi:10.1016/j.jpba.2021.114071
[49] Lu, Q.; Su, T.; Shang, Z.; Jin, D.; Shu, Y.; Xu, Q.; Hu, X., Flexible paper-based Ni-MOF composite/AuNPs/CNTs film electrode for HIV DNA detection, Biosensors & Bioelectronics, 184, Article 113229 (2021) · doi:10.1016/j.bios.2021.113229
[50] Lu, X.; Mei, T.; Guo, Q.; Zhou, W.; Li, X.; Chen, J.; Zhou, X.; Sun, N.; Fang, Z., Improved performance of lateral flow immunoassays for alpha-fetoprotein and vanillin by using silica shell-stabilized gold nanoparticles, Microchim Acta, 186, 2 (2019) · doi:10.1007/s00604-018-3107-9
[51] Lu, Y.; Liu, C.; Wang, K.; Huang, H.; Xu, X., Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues, Robotics and Computer-Integrated Manufacturing, 61, Article 101837 (2019) · doi:10.1016/j.rcim.2019.101837
[52] Lu, Y.; Zhao, Z.; Wei, W.; Kui, Z., Digital twin product lifecycle system dedicated to the constant velocity joint, Computers & Electrical Engineering, 93, Article 107264 (2021) · doi:10.1016/j.compeleceng.2021.107264
[53] Lu, Z.; O’Dell, D.; Srinivasan, B.; Rey, E.; Wang, R.; Vemulapati, S.; Mehta, S.; Erickson, D., Rapid diagnostic testing platform for iron and vitamin A deficiency, Proceedings of the National Academy of Sciences of the United States of America, 114, 51, 13513-13518 (2017) · doi:10.1073/pnas.1711464114
[54] Luo, H.; Li, K.; Kaynak, O.; Yin, S.; Huo, M.; Zhao, H., A robust data-driven fault detection approach for rolling mills with unknown roll eccentricity, IEEE Transactions on Control Systems Technology, 28, 6, 2641-2648 (2019) · doi:10.1109/TCST.87
[55] Luo, X.; Yuan, Y.; Chen, S.; Zeng, N.; Wang, Z., Position-transitional particle swarm optimization-incorporated latent factor analysis, IEEE Transactions on Knowledge and Data Engineering (2020) · doi:10.1109/TKDE.2020.3033324
[56] Mahmoudi, T.; de la Guardia, M.; Baradaran, B., Lateral flow assays towards point-of-care cancer detection: a review of current progress and future trends, Trac-Trends in Analytical Chemistry, 125, Article 115842 (2020) · doi:10.1016/j.trac.2020.115842
[57] Manasa, K., Priya, K., Reddy, S., Channappayya, S., Vanjari, S., Dendukuri, D., Sridharan, S., Choudhary, T., & Bhandari, P. (2013). An automated algorithm for the quantification of hCG level in novel fabric-based home pregnancy test kits. In 2013 asilomar conference on signals systems and computers (pp. 245-247).
[58] Mao, P.; Cao, L.; Li, Z.; You, M.; Gao, B.; Xie, X.; Xue, Z.; Peng, P.; Yao, C.; Xu, F., A digitalized isothermal nucleic acid testing platform based on a pump-free open droplet array microfluidic chip, The Analyst, 146, 22, 6960-6969 (2021) · doi:10.1039/D1AN01373D
[59] Maschler, B.; Weyrich, M., Deep transfer learning for industrial automation: a review and discussion of new techniques for data-driven machine learning, IEEE Industrial Electronics Magazine, 15, 2, 65-75 (2020) · doi:10.1109/MIE.2020.3034884
[60] Naik, L.; Sharma, R.; Mann, B.; Lata, K.; Rajput, Y. S.; Surendra Nath, B., Rapid screening test for detection of oxytetracycline residues in milk using lateral flow assay, Food Chemistry, 219, 2, 85-92 (2017) · doi:10.1016/j.foodchem.2016.09.090
[61] Natarajan, S.; Saatci, E.; Joseph, J., Development and evaluation of europium-based quantitative lateral flow immunoassay for the chronic kidney disease marker cystatin-c, Journal of Fluorescence, 32, 2, 419-426 (2022) · doi:10.1007/s10895-021-02886-y
[62] Nguyen, V.-T.; Song, S.; Park, S.; Joo, C., Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay, Biosensors and Bioelectronics, 152, 6, Article 112015 (2020) · doi:10.1016/j.bios.2020.112015
[63] O’Sullivan, S.; Ali, Z.; Jiang, X.; Abdolvand, R.; Unlu, M.; da Silva, H.; Baca, J.; Kim, B.; Scott, S.; Sajid, M.; Moradian, S.; Mansoorzare, H.; Holzinger, A., Developments in transduction, connectivity and ai/machine learning for point-of-care testing, Sensors, 19, 18, 1917 (2019) · doi:10.3390/s19081917
[64] Park, H.-D., Current status of clinical application of point-of-care testing, Archives of Pathology & Laboratory Medicine, 145, 2, 168-175 (2020) · doi:10.5858/arpa.2020-0112-RA
[65] Park, J., An optimized colorimetric readout method for lateral flow immunoassays, Sensors, 18, 12, 4084 (2018) · doi:10.3390/s18124084
[66] Pu, Z.; Yi, J.; Liu, Z.; Qiu, T.; Sun, J.; Li, F., Knowledge-based and data-driven integrating methodologies for collective intelligence decision making: a survey, Acta Automatica Sinica, 48, 3, 627-643 (2022) · doi:10.16383/j.aas.c210118
[67] Qian, S.; Bau, H. H., A mathematical model of lateral flow bioreactions applied to sandwich assays, Analytical Biochemistry, 322, 1, 89-98 (2003) · doi:10.1016/j.ab.2003.07.011
[68] Qian, S.; Bau, H. H., Analysis of lateral flow biodetectors: competitive format, Analytical Biochemistry, 326, 2, 211-224 (2004) · doi:10.1016/j.ab.2003.12.019
[69] Qin, Q.; Wang, K.; Xu, H.; Cao, B.; Zheng, W.; Jin, Q.; Cui, D., Deep learning on chromatographic data for segmentation and sensitive analysis, Journal of Chromatography A, 1634, 8, Article 461680 (2020) · doi:10.1016/j.chroma.2020.461680
[70] Qin, Q.; Wang, K.; Yang, J.; Xu, H.; Cao, B.; Wo, Y.; Jin, Q.; Cui, D., Algorithms for immunochromatographic assay: review and impact on future application, The Analyst, 144, 19, 5659-5676 (2019) · doi:10.1039/C9AN00964G
[71] Quentin, O.; Sylvie, P.; Olivier, M.; Julie T. Charlotte, G.; Nadine, A.; Amandine, G.; Elisabeth, B.; Thomas, B.; Bruno, P.; Aymeric, C., Prospective evaluation of the point-of-care use of a rapid antigenic SARS-CoV-2 immunochromatographic test in a paediatric emergency department, Clinical Microbiology and Infection, 28, 5, 734.E1-734.E6. (2022) · doi:10.1016/j.cmi.2021.12.019
[72] Ra, M.; Muhammad, M.; Lim, C.; Han, S.; Jung, C.; Kim, W., Smartphone-based point-of-care urinalysis under variable illumination, IEEE Journal Translational Engineering in Health and Medicine, 6, 1-11 (2018) · doi:10.1109/JTEHM.2017.2765631
[73] Rahmani, A.; Mirmahaleh, S., Coronavirus disease (COVID-19) prevention and treatment methods and effective parameters: a systematic literature review, Sustainable Cities and Society, 64, 10234, Article 102568 (2021) · doi:10.1016/j.scs.2020.102568
[74] Sha, P., Dong, P., Deng, J., & Wu, X. (2021). Rapid identification and quantitative analysis of anthrax protective antigen based on surface-enhanced Raman scattering and convolutional neural networks. In 21st IEEE international conference on nanotechnology (pp. 155-158).
[75] Silva-Neto, H.; Cardoso, T.; McMahon, C.; Sgobbi, L.; Henry, C.; Coltro, W., Plug-and-play assembly of paper-based colorimetric and electrochemical devices for multiplexed detection of metals, The Analyst, 146, 11, 3463-3473 (2021) · doi:10.1039/D1AN00176K
[76] Sohrabi, H.; Majidi, M.; Khaki, P.; Jahanban-Esfahlan, A.; de la Guardia, M.; Mokhtarzadeh, A., State of the art: lateral flow assays toward the point-of-care foodborne pathogenic bacteria detection in food samples, Comprehensive Reviews in Food Science and Food Safety, 21, 2, 1868-1912. (2022) · doi:10.1111/1541-4337.12913
[77] Sotnikov, D. V.; Byzova, N. A.; Zvereva, E. A.; Bartosh, A. V.; Zherdev, A. V.; Dzantiev, B. B., Mathematical modeling of immunochromatographic test systems in a competitive format: analytical and numerical approaches, Biochemical Engineering Journal, 164, Article 107763 (2020) · doi:10.1016/j.bej.2020.107763
[78] Sotnikov, D. V.; Zherdev, A. V.; Dzantiev, B. B., Mathematical modeling of bioassays, Biochemistry, 82, 13, 1744-1766 (2017) · doi:10.1134/S0006297917130119
[79] Suarez-Pantaleon, C.; Wichers, J.; Abad-Somovilla, A.; van Amerongen, A.; Abad-Fuentes, A., Development of an immunochromatographic assay based on carbon nanoparticles for the determination of the phytoregulator forchlorfenuron, Biosensors & Bioelectronics, 42, 170-176 (2013) · doi:10.1016/j.bios.2012.11.001
[80] Tian, E.; Wang, Z.; Zou, L.; Yue, D., Chance-constrained \(####\) control for a class of time-varying systems with stochastic nonlinearities: the finite-horizon case, Automatica, 107, 3, 296-305 (2019) · Zbl 1429.93090 · doi:10.1016/j.automatica.2019.05.039
[81] Tian, E.; Wang, Z.; Zou, L.; Yue, D., Probabilistic-constrained filtering for a class of nonlinear systems with improved static event-triggered communication, International Journal of Robust and Nonlinear Control, 29, 5, 1484-1498 (2019) · Zbl 1410.93130 · doi:10.1002/rnc.v29.5
[82] Verdouw, C.; Tekinerdogan, B.; Beulens, A.; Wolfert, S., Digital twins in smart farming, Agricultural Systems, 189, 15 (2021) · doi:10.1016/j.agsy.2020.103046
[83] Vinitha, T.; Ghosh, S.; Milleman, A.; Nguyen, T.; Ahn, C., A new polymer lab-on-a-chip (LOC) based on a microfluidic capillary flow assay (MCFA) for detecting unbound cortisol in saliva, Lab on A Chip, 20, 11, 1961-1974 (2020) · doi:10.1039/D0LC00071J
[84] Vitorino, R.; Guedes, S.; da Costa, J.; Kasicka, V., Microfluidics for peptidomics, proteomics, and cell analysis, Nanomaterials, 11, 5, 1118 (2021) · doi:10.3390/nano11051118
[85] Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E., Deep learning for computer vision: a brief review, Computational Intelligence and Neuroscience, 2018, Article 7068349 (2018) · doi:10.1155/2018/7068349
[86] Wan, Z.; Dong, Y.; Yu, Z.; Lv, H.; Lv, Z., Semi-supervised support vector machine for digital twins based brain image fusion, Frontiers in Neuroscience, 15, Article 705323 (2021) · doi:10.3389/fnins.2021.705323
[87] Wang, Z.; Shan, P.; Wei, D.; Hao, S.; Zhang, Z.; Li, S.; Xu, J., Optical density value and ratio as novel indexes for nanoemulsion sterile filtration process control or characterization, Journal of Pharmaceutical Sciences, 110, 6, 2416-2422 (2020) · doi:10.1016/j.xphs.2020.12.032
[88] Wang, Z.; Zhao, J.; Xu, X.; Guo, L.; Xu, L.; Sun, M.; Hu, S.; Kuang, H.; Xu, C.; Li, A., An overview for the nanoparticles-based quantitative lateral flow assay, Small Methods, 6, 1, e2101143 (2022) · doi:10.1002/smtd.202101143
[89] Wootton, R.; Demello, A., Microfluidics analog-to-digital drug screening, Nature, 483, 7387, 43-44 (2012) · doi:10.1038/483043a
[90] Xia, G.; Wang, J.; Liu, Z.; Bai, L.; Ma, L., Effect of sample volume on the sensitivity of lateral flow assays through computational modeling, Analytical Biochemistry, 619, Article 114130. (2021) · doi:10.1016/j.ab.2021.114130
[91] Xie, Y.; Dai, L.; Yang, Y., Microfluidic technology and its application in the point-of-care testing field, Biosensors & Bioelectronics: X, 10, Article 100109 (2022) · doi:10.1016/j.biosx.2022.100109
[92] Xu, L.; Wang, A.; Li, X.; Oh, K., Passive micropumping in microfluidics for point-of-care testing, Biomicrofluidics, 14, 3 (2020) · doi:10.1063/5.0002169
[93] Yang, J.; Gessner, C.; Duerksen, J.; Biber, D.; Binder, J.; Ozturk, M.; Foote, B.; McEntire, R.; Stirling, K.; Ding, Y.; Wild, D., Knowledge graph analytics platform with LINCS and IDG for Parkinson’s disease target illumination, BMC Bioinformatics, 23, 1, 1-15 (2022) · doi:10.1186/s12859-021-04477-x
[94] Yao, S.; Zhou, Z.; He, G.; Zhang, K.; Huang, X.; Qiu, B.; Sun, D., A microfluidically controlled concave-convex membrane lens using an addressing operation system, Microsystems & Nanoengineering, 6, 1 (2020) · doi:10.1038/s41378-020-0148-0
[95] Yeh, C., Zhao, Z., Lin, Y., & Shen, P. (2014). Using the Taguchi method to optimize the inspection equipment for human chorionic gonadotropin detection. In 13th IEEE sensors conference.
[96] Zeng, N.; Hung, Y.; Li, Y.; Du, M., A novel switching local evolutionary PSO for quantitative analysis of lateral flow immunoassay, Expert Systems with Application, 41, 4, 1708-1715 (2014) · doi:10.1016/j.eswa.2013.08.069
[97] Zeng, N.; Li, H.; Li, Y.; Luo, X., Quantitative analysis of immunochromatographic strip based on convolutional neural network, IEEE Access, 7, 16257-16263 (2019) · doi:10.1109/ACCESS.2019.2893927
[98] Zeng, N.; Li, H.; Wang, Z.; Liu, W.; Liu, S.; Alsaadi, F.; Liu, X., Deep-reinforcement-learning-based images segmentation for quantitative analysis of gold immunochromatographic strip, Neurocomputing, 425, 6, 173-180 (2021) · doi:10.1016/j.neucom.2020.04.001
[99] Zeng, N., Li, Y., & Du, M. (2010). Rapid quantitative image analysis of hCG by gold immunochromatographic assay and genetic fast FCM algorithm. In 3rd international conference on biomedical engineering and informatics (pp. 1560-1564).
[100] Zeng, N.; Li, Y.; Du, M., Recent advances on modeling the lateral flow immunoassay, Journal of Advances in Biomedical Engineering and Technology, 2, 1, 46-50 (2015) · doi:10.15379/2409-3394
[101] Zeng, N.; Wang, Z.; Li, Y.; Du, M.; Cao, J.; Liu, X., Time series modeling of nano-gold immunochromatographic assay via expectation maximization algorithm, IEEE Transactions on Biomedical Engineering, 60, 12, 3418-3424 (2013) · doi:10.1109/TBME.2013.2260160
[102] Zeng, N.; Wang, Z.; Li, Y.; Du, M.; Liu, X., Inference of nonlinear state-space models for sandwich-type lateral flow immunoassay using extended kalman filtering, IEEE Transactions on Biomedical Engineering, 58, 7, 1959-1966 (2011) · doi:10.1109/TBME.2011.2106502
[103] Zeng, N.; Wang, Z.; Li, Y.; Du, M.; Liu, X., Identification of nonlinear lateral flow immunoassay state-space models via particle filter approach, IEEE Transactions on Nanotechnology, 11, 2, 321-327 (2012) · doi:10.1109/TNANO.2011.2171193
[104] Zeng, N.; Wang, Z.; Li, Y.; Du, M.; Liu, X., A hybrid EKF and switching PSO algorithm for joint state and parameter estimation of lateral flow immunoassay models, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9, 2, 321-329 (2012) · doi:10.1109/TCBB.2011.140
[105] Zeng, N.; Wang, Z.; Liu, W.; Zhang, H.; Hone, K.; Liu, X., A dynamic neighborhood-based switching particle swarm optimization algorithm, IEEE Transactions on Cybernetics (2020) · doi:10.1109/TCYB.2020.3029748
[106] Zeng, N.; Wang, Z.; Zhang, H.; Alsaadi, F. E., A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay, Cognitive Computation, 8, 2, 143-152 (2016) · doi:10.1007/s12559-016-9396-6
[107] Zeng, N.; Wang, Z.; Zhang, H.; Kim, K.-E.; Li, Y.; Liu, X., An improved particle filter with a novel hybrid proposal distribution for quantitative analysis of gold immunochromatographic strips, IEEE Transactions on Nanotechnology, 18, 819-829 (2019) · doi:10.1109/TNANO.7729
[108] Zeng, N.; Wang, Z.; Zhang, H.; Liu, W.; Alsaadi, F., Deep belief networks for quantitative analysis of gold immunochromatographic strip, Cognitive Computation, 8, 4, 684-692 (2016) · doi:10.1007/s12559-016-9404-x
[109] Zeng, N.; Wang, Z.; Zineddin, B.; Li, Y.; Du, M.; Xiao, L.; Liu, X.; Young, T., Image-based quantitative analysis of gold immunochromatographic strip via cellular neural network approach, IEEE Transactions on Medical Imaging, 33, 5, 1129-1136 (2014) · doi:10.1109/TMI.42
[110] Zeng, N.; You, Y.; Xie, L.; Zhang, H.; Ye, L.; Hong, W.; Li, Y., A new imaged-based quantitative reader for the gold immunochromatographic assay, Optik, 152, 92-99 (2018) · doi:10.1016/j.ijleo.2017.09.109
[111] Zeng, N.; Zhang, H.; Li, Y.; Liang, J.; Dobaie, A., Denoising and deblurring gold immunochromatographic strip images via gradient projection algorithms, Neurocomputing, 247, 11, 165-172 (2017) · doi:10.1016/j.neucom.2017.03.056
[112] Zeng, N.; Zhu, P.; Li, Y.; Jiang, H.; Chu, L.; Du, M., Study on mathematical model and simulation of sandwich-type lateral flow immunoassay, Chinese Journal of Analytical Chemistry, 45, 1, 69-74 (2017) · doi:10.11895/j.issn.0253-3820.160503
[113] Zeng, N.; Zhu, P.; Li, Y.; Jiang, H.; Du, M., Study on mathematical model and simulation of competition-type lateral flow immunoassay, Chinese Journal of Analytical Chemistry, 45, 9, 1284-1290 (2017) · doi:10.1002/cjoc.v35.8
[114] Zhang, D.; Du, K.; Han, W.; Li, X.; Wang, Y., Peak point location of fluorescence immunochromatography image based on the cascaded convolutional neural network, Chinese Journal of Scientific Instrument, 42, 1, 217-227 (2021) · doi:10.19650/j.cnki.cjsi.J2006990
[115] Zhang, J., & Du, M. (2012). Fast image segmentation of gold immunochromatographic strip based on FCM clustering algorithm in HSV color space. In 5th international congress on image and signal processing (CISP) (pp. 525-528).
[116] Zhang, T.; Wang, H.; Zhong, Z.; Li, C.; Chen, W.; Liu, B.; Zhao, Y., A smartphone-based rapid quantitative detection platform for lateral flow strip of human chorionic gonadotropin with optimized image algorithm, Microchemical Journal, 157, Article 105038 (2020) · doi:10.1016/j.microc.2020.105038
[117] Zhang, X.-M.; Han, Q.-L.; Wang, Z.; Zhang, B.-L., Neuronal state estimation for neural networks with two additive time-varying delay components, IEEE Transactions on Cybernetics, 47, 10, 3184-3194 (2017) · doi:10.1109/TCYB.2017.2690676
[118] Zhang, Y.; Satapathy, S.; Guttery, D.; Gorriz, J.; Wang, S., Improved breast cancer classification through combining graph convolutional network and convolutional neural network, Information Processing & Management, 58, 2, Article 102439 (2021) · doi:10.1016/j.ipm.2020.102439
[119] Zhao, J.; Lin, Y.; Wu, J.; Nyein, H.; Bariya, M.; Tai, L.; Chao, M.; Ji, W.; Zhang, G.; Fan, Z.; Javey, A., A fully integrated and self-powered smartwatch for continuous sweat glucose monitoring, ACS Sensors, 4, 7, 1925-1933 (2019) · doi:10.1021/acssensors.9b00891
[120] Zhuang, Y.; Wu, F.; Chen, C.; Pan, Y., Challenges and opportunities: from big data to knowledge in AI 2.0, Frontiers of Information Technology & Electronic Engineering, 18, 1, 3-14 (2017) · doi:10.1631/FITEE.1601883
[121] Zou, L.; Wang, Z.; Gao, H.; Liu, X., State estimation for discrete-time dynamical networks with time-varying delays and stochastic disturbances under the Round-Robin protocol, IEEE Transactions on Neural Networks and Learning Systems, 28, 5, 1139-1151 (2017) · doi:10.1109/TNNLS.5962385
[122] Zou, L.; Wang, Z.; Hu, J.; Zhou, D. H., Moving horizon estimation with unknown inputs under dynamic quantization effects, IEEE Transactions on Automatic Control, 65, 12, 5368-5375 (2020) · Zbl 1536.93904 · doi:10.1109/TAC.9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.