×

The dynamics of the smooth positon and b-positon solutions for the NLS-MB equations. (English) Zbl 1517.35215


MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35C08 Soliton solutions
Full Text: DOI

References:

[1] Yang, JW; Gao, YT; Feng, YJ; Su, CQ, Solitons and dromion-like structures in an inhomogeneous optical fiber, Nonlinear Dyn., 87, 851-862 (2017) · doi:10.1007/s11071-016-3083-8
[2] Yin, HM; Tian, B.; Zhang, CR; Du, XX; Zhao, XC, Optical breathers and rogue waves via the modulation instability for a higher-order generalized nonlinear Schrödinger equation in an optical fiber transmission system, Nonlinear Dyn., 97, 843-852 (2019) · Zbl 1430.78007 · doi:10.1007/s11071-019-05016-3
[3] Yu, WT; Liu, WJ; Triki, H.; Zhou, Q.; Biswas, A., Phase shift, oscillation and collision of the anti-dark solitons for the \((3+1)\)-dimensional coupled nonlinear Schrödinger equation in an optical fiber communication system, Nonlinear Dyn., 97, 1253-1262 (2019) · Zbl 1430.35217 · doi:10.1007/s11071-019-05045-y
[4] Ma, YL, Interaction and energy transition between the breather and rogue wave for a generalized nonlinear Schrödinger system with two higher-order dispersion operators in optical fibers, Nonlinear Dyn., 97, 95-105 (2019) · Zbl 1430.35210 · doi:10.1007/s11071-019-04956-0
[5] Kang, ZZT; Xia, C.; Ma, WX, Riemann-Hilbert approach and N-soliton solution for an eighth-order nonlinear Schrödinger equation in an optical fiber, Adv. Differ. Equ., 188, 1-14 (2019) · Zbl 1459.35303
[6] Baleanu, D.; Osman, MS; Zubair, A.; Raza, N.; Arqub, OA; Ma, WX, Soliton solutions of a nonlinear fractional Sasa-Satsuma equation in monomode optical fibers, Appl. Math. Inf. Sci., 14, 365-374 (2020) · doi:10.18576/amis/140302
[7] Hasegawa, A.; Tappert, F., Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion, Appl. Phys. Lett., 23, 142-144 (1973) · doi:10.1063/1.1654836
[8] McCall, SL; Hahn, EL, Self induced transparency by pulsed coherent light, Phys. Rev. Lett., 18, 908-911 (1967) · doi:10.1103/PhysRevLett.18.908
[9] Maimistov, AI; Manykin, EA, Propagation of ultrashort optical pulses in resonant non-linear light guides, Zh. Eksp. Teor. Fiz., 85, 1177-1181 (1983)
[10] Maimistov, AI; Basharov, AM, Nonlinear Optical Waves (1999), Berlin: Springer, Berlin · Zbl 0960.78001 · doi:10.1007/978-94-017-2448-7
[11] Kakei, S.; Satsuma, J., Multi-soliton solutions of a coupled system of the nonlinear Schrödinger equation and the Maxwell-Bloch equations, J. Phys. Soc. Jpn., 63, 885-894 (1994) · Zbl 0972.35517 · doi:10.1143/JPSJ.63.885
[12] Neugebauer, G.; Meinel, R., General N-soliton solution of the AKNS class on arbitrary background, Phys. Lett. A, 100, 467-470 (1984) · doi:10.1016/0375-9601(84)90827-2
[13] Matveev, VB; Salle, MA, Darboux Transformations and Solitons (1991), Berlin: Springer, Berlin · Zbl 0744.35045 · doi:10.1007/978-3-662-00922-2
[14] He, JS; Cheng, Y.; Li, YS, The Darboux transformation for the NLS-MB equations, Commun. Theor. Phys., 38, 493-496 (2002) · Zbl 1267.81306 · doi:10.1088/0253-6102/38/4/493
[15] He, JS; Xu, SW; Porsezian, K., New types of rougue wave in an erbium-doped fibre system, J. Phys. Soc. Jpn., 81, 033002 (2012) · doi:10.1143/JPSJ.81.033002
[16] He, JS; Xu, SW; Porsezian, K., N-order bright and dark rogue waves in a resonant erbium-doped fiber system, Phys. Rev. E, 86, 066603 (2012) · doi:10.1103/PhysRevE.86.066603
[17] Dubard, P.; Gaillard, P.; Klein, C.; Matveev, VB, On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation, Eur. Phys. J. Spec. Top., 185, 247-258 (2010) · doi:10.1140/epjst/e2010-01252-9
[18] He, JS; Zhang, HR; Wang, LH; Porsezian, K.; Fokas, AS, Generating mechanism for higher-order rogue waves, Phys. Rev. E, 87, 052914 (2013) · doi:10.1103/PhysRevE.87.052914
[19] Wang, GH; Zhang, YS; He, JS, Dynamics of the smooth positons of the Wadati-Konno-Ichikawa equation, Commun. Theor. Phys., 69, 227-232 (2018) · Zbl 1391.35344 · doi:10.1088/0253-6102/69/3/227
[20] Liu, W.; Zhang, YS; He, JS, Dynamics of the smooth positons of the complex modified KdV equation, Waves Random Complex Media, 28, 203-214 (2018) · Zbl 07583349 · doi:10.1080/17455030.2017.1335916
[21] Zhang, Z.; Yang, XY; Li, B., Novel soliton molecules and breather-positon on zero background for the complex modified KdV equation, Nonlinear Dyn., 100, 1551-1557 (2020) · doi:10.1007/s11071-020-05570-1
[22] Matveev, VB, Generalized Wronskian formula for solutions of the KdV equations: first applications, Phys. Lett. A, 166, 205-208 (1992) · doi:10.1016/0375-9601(92)90362-P
[23] Beutler, R., Positon solutions of the sine-Gordon equation, J. Math. Phys., 34, 3098-3109 (1993) · Zbl 0777.35070 · doi:10.1063/1.530065
[24] Andreev, VA; Brezhnev, YV, Darboux transformation, positons and general superposition formula for the sine-Gordon equation, Phys. Lett. A, 207, 58-66 (1995) · Zbl 1020.35517 · doi:10.1016/0375-9601(95)00663-N
[25] Stahlhofen, AA, Positons of the modified Korteweg de Vries equation, Ann. Phys., 504, 554-569 (1992) · Zbl 0771.35064 · doi:10.1002/andp.19925040708
[26] Rasinariu, C.; Sukhatme, U.; Khare, A., Negaton and positon solutions of the KdV and mKdV hierarchy, J. Phys. A: Math. Gen., 29, 1803-1823 (1996) · Zbl 0914.35119 · doi:10.1088/0305-4470/29/8/027
[27] Xing, QX; Wu, ZW; Mihalache, D.; He, JS, Smooth positon solutions of the focusing modified Korteweg-de Vries equation, Nonlinear Dyn., 89, 2299-2310 (2017) · doi:10.1007/s11071-017-3579-x
[28] Stahlhofen, AA; Matveev, VB, Positons for the Toda lattice and related spectral problems, J. Phys. A: Math. Gen., 28, 1957-1965 (1995) · Zbl 0843.58071 · doi:10.1088/0305-4470/28/7/017
[29] Song, WJ; Xu, SW; Li, MH; He, JS, Generating mechanism and dynamic of the smooth positons for the derivative nonlinear Schrödinger equation, Nonlinear Dyn., 97, 2135-2145 (2019) · Zbl 1430.35212 · doi:10.1007/s11071-019-05111-5
[30] Beutler, R.; Stahlhofen, AA; Matveev, VB, What do solitons, breathers and positons have in common?, Phys. Scr., 50, 9-20 (1994) · doi:10.1088/0031-8949/50/1/001
[31] Matveev, VB, Positons: slowly decreasing analogues of solitons, Theor. Math. Phys. Fiz., 131, 483-497 (2002) · Zbl 1029.37051 · doi:10.1023/A:1015149618529
[32] Jaworski, M.; Zagrodziski, J., Positon and positon-like solutions of the Korteweg-de Vries and sine-Gordon equations, Chaos, Solitons Fractals, 5, 2229-2233 (1995) · Zbl 1080.35536 · doi:10.1016/0960-0779(94)E0097-9
[33] Chow, KW; Lai, WC; Shek, CK; Tso, K., Positon-like solutions of nonlinear evolution equations in \((2+1)\) dimensions, Chaos, Solitons Fractals, 9, 1901-1912 (1998) · Zbl 0934.35152 · doi:10.1016/S0960-0779(97)00128-8
[34] Qiu, DQ; Cheng, WG, The \(n\)-fold Darboux transformation for the Kundu-Eckhaus equation and dynamics of the smooth positon solutions, Commun. Nonlinear Sci. Numer. Simulat., 78, 104887 (2019) · Zbl 1473.35512 · doi:10.1016/j.cnsns.2019.104887
[35] Wang, LH; He, JS; Xu, H.; Wang, J.; Porsezian, K., Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber, Phys. Rev. E, 95, 042217 (2017) · doi:10.1103/PhysRevE.95.042217
[36] Qiu, DQ; Cheng, WG, The nth-order degenerate breather solution for the Kundu-Eckhaus equation, Appl. Math. Lett., 98, 13-21 (2019) · Zbl 1423.81069 · doi:10.1016/j.aml.2019.05.022
[37] Liu, SZ; Zhang, YS; He, JS, Smooth positons of the second-type derivative nonlinear Schrödinger equation, Commun. Theor. Phys., 71, 357-361 (2019) · Zbl 1452.35191 · doi:10.1088/0253-6102/71/4/357
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.