×

Riemann-Hilbert approach and \(N\)-soliton solutions for a new two-component Sasa-Satsuma equation. (English) Zbl 1516.37088


MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q51 Soliton equations
35C08 Soliton solutions
35Q15 Riemann-Hilbert problems in context of PDEs
Full Text: DOI

References:

[1] Sasa, N.; Satsuma, J., New-type of solutions for a higher-order nonlinear evolution equation, J. Phys. Soc. Jpn., 60, 409-417 (1991) · Zbl 0920.35128 · doi:10.1143/JPSJ.60.409
[2] Nakkeeran, K.; Porsezian, K.; Sundaram, SP, Optical solitons in \(N\)-coupled higher order nonlinear Schrödinger equations, Phys. Rev. Lett., 80, 1425 (1998)
[3] Hasegawa, A.; Kodama, Y., Solitons in Optical Communications (1995), Oxford: Clarendon, Oxford · Zbl 0840.35092
[4] Ghosh, S.; Kundu, A.; Nandy, S., Soliton solutions, Liouville integrability andgauge equivalence of Sasa-Satsuma equaiton, J. Math. Phys., 40, 1993-2000 (1999) · Zbl 0946.35097 · doi:10.1063/1.532845
[5] Gilson, C.; Hietarinta, J.; Nimmo, JJC; Ohta, Y., Sasa-Satsuma higher-order nonlinear Schrödinger equation and its bilinearization and multisoliton solutions, Phys. Rev. E, 68, 016614 (2003) · doi:10.1103/PhysRevE.68.016614
[6] Nimmo, JJC; Yilmaz, H., Binary Darboux transformation for the Sasa-Satsuma equation, J. Phys. A, 48, 425202 (2015) · Zbl 1325.37046 · doi:10.1088/1751-8113/48/42/425202
[7] Akhmediev, N.; Soto-Crespo, JM; Devine, N.; Hoffmann, NP, Rogue wave spectra of the Sasa-Satsuma equation, Phys. D, 294, 37-42 (2015) · Zbl 1364.35324 · doi:10.1016/j.physd.2014.11.006
[8] Mu, G.; Qin, ZY; Grimshaw, R.; Akhmediev, N., Intricate dynamics of rogue waves governed by the Sasa-Satsuma equation, Phys. D, 402, 132252 (2020) · Zbl 1453.37066 · doi:10.1016/j.physd.2019.132252
[9] Wei, J.; Wang, X.; Geng, XG, Periodic and rational solutions of the reduced Maxwell-Bloch equations, Commun. Nonlinear Sci. Numer. Simul., 59, 1-14 (2018) · Zbl 1510.78011 · doi:10.1016/j.cnsns.2017.10.017
[10] Li, RM; Geng, XG, On a vector long wave-short wave-type model, Stud. Appl. Math., 144, 164-184 (2020) · Zbl 1454.35314 · doi:10.1111/sapm.12293
[11] Li, RM; Geng, XG, Rogue periodic waves of the sine-Gordon equation, Appl. Math. Lett., 102, 106147 (2020) · Zbl 1440.35030 · doi:10.1016/j.aml.2019.106147
[12] Wei, J.; Geng, XG; Zeng, X., The Riemann theta function solutions for the hierarchy of Bogoyavlensky lattices, Trans. Am. Math. Soc., 371, 1483-1507 (2019) · Zbl 1403.37078 · doi:10.1090/tran/7349
[13] Yang, JK; Kaup, DK, Squared eigenfunctions for the Sasa-Satsuma equation, J. Math. Phys., 50, 023504 (2009) · Zbl 1202.35275 · doi:10.1063/1.3075567
[14] Kim, J.; Park, QH; Shin, HJ, Conservation laws in higher-order nonlinear Schrödinger equations, Phys. Rev. E, 58, 6746-6751 (1998) · doi:10.1103/PhysRevE.58.6746
[15] Sergyeyev, A.; Demskoi, D., Sasa-Satsuma (complex modified Korteweg-de Vries II) and the complex sine-Gordon II equation revisited: recursion operators, nonlocal symmetries, and more, J. Math. Phys., 48, 042702 (2017) · Zbl 1137.37328 · doi:10.1063/1.2710552
[16] Wu, LH; He, GL; Geng, XG, The full positive flows of Manakov hierarchy, Hamiltonian structures and conservation laws, Appl. Math. Comput., 220, 20-37 (2013) · Zbl 1329.35294
[17] Xu, J.; Fan, EG, The unified transform method for the Sasa-Satsuma equation on the half-line, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 469, 20130068 (2013) · Zbl 1348.35249 · doi:10.1098/rspa.2013.0068
[18] Zhai, YY; Geng, XG, The coupled Sasa-Satsuma hierarchy: trigonal curve and finite genus solutions, Anal. Appl., 15, 667-697 (2017) · Zbl 1376.37113 · doi:10.1142/S0219530516500214
[19] Liu, H.; Geng, XG; Xue, B., The Deift-Zhou steepest descent method to long-time asymptotics for the Sasa-Satsuma equation, J. Differ. Equ., 265, 5984-6008 (2018) · Zbl 1414.35137 · doi:10.1016/j.jde.2018.07.026
[20] Faddeev, LD; Takhtajan, LA, Hamiltonian Methods in the Theory of Solitons (1987), Berlin: Springer, Berlin · Zbl 0632.58004
[21] Deift, PA; Zhou, X., A steepest descent method for oscillatory Riemann-Hilbert problems, asymptotics for the mKdV equation, Ann. Math., 137, 295-368 (1993) · Zbl 0771.35042 · doi:10.2307/2946540
[22] Ablowitz, MJ; Fokas, AS, Complex Variables: Introduction and Applications (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1088.30001
[23] Yang, JK, Nonlinear Waves in Integrable and Nonintegrable Systems (2010), Philadelphia: SIAM, Philadelphia · Zbl 1234.35006
[24] Shchesnovich, VS; Barashenkov, IV, Soliton-radiation coupling in the parametrically driven, damped nonlinear Schrödinger equation, Phys. D, 164, 83-109 (2002) · Zbl 1002.35112 · doi:10.1016/S0167-2789(02)00358-5
[25] Yang, B.; Chen, Y., High-order soliton matrices for Sasa-Satsuma equation via local Riemann-Hilbert problem, Nonlinear Anal. Real World Appl., 45, 918-941 (2019) · Zbl 1414.35196 · doi:10.1016/j.nonrwa.2018.08.004
[26] Wang, DS; Zhang, DJ; Yang, JK, Integrable properties of the general coupled nonlinear Schrödinger equations, J. Math. Phys., 51, 023510 (2010) · Zbl 1309.35145 · doi:10.1063/1.3290736
[27] Geng, XG; Li, RM; Xue, B., A vector general nonlinear Schrödinger equation with \((m+n)\) components, J. Nonlinear Sci., 30, 991-1013 (2020) · Zbl 1437.35627
[28] Geng, XG; Wu, JP, Riemann-Hilbert approach and \(N\)-soliton solutions for a generalized Sasa-Satsuma equation, Wave Motion, 60, 62-72 (2016) · Zbl 1467.35282
[29] Ma, WX, Application of the Riemann-Hilbert approach to the multicomponent AKNS integrable hierarchies, Nonlinear Anal. Real World Appl., 47, 1-17 (2019) · Zbl 1406.37051 · doi:10.1016/j.nonrwa.2018.09.017
[30] Ma, WX, Riemann-Hilbert problems and \(N\)-soliton solutions for a coupled mKdV system, J. Geom. Phys., 132, 45-54 (2018) · Zbl 1397.35260
[31] Wu, JP; Geng, XG, Inverse scattering transform and soliton classification of the coupled modified Korteweg-de Vries equation, Commun. Nonlinear Sci. Numer. Simul., 53, 83-93 (2017) · Zbl 1510.35281 · doi:10.1016/j.cnsns.2017.03.022
[32] Geng, XG; Chen, MM; Wang, KD, Long-time asymptotics of the coupled modified Korteweg-de Vries equation, J. Geom. Phys., 142, 151-167 (2019) · Zbl 1420.35313 · doi:10.1016/j.geomphys.2019.04.009
[33] Wu, JP, Riemann-Hilbert approach of the Newell-type long-wave-short-wave equation via the temporal-part spectral analysis, Nonlinear Dyn., 98, 749-760 (2019) · Zbl 1430.35183 · doi:10.1007/s11071-019-05226-9
[34] Yan, ZY, Initial-boundary value problem for the spin-1 Gross-Pitaevskii system with a \(4\times 4\) Lax pair on a finite interval, J. Math. Phys., 60, 083511 (2019) · Zbl 1421.37029
[35] Peng, WQ; Tian, SF; Wang, XB; Zhang, TT; Fang, Y., Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations, J. Geom. Phys., 146, 103508 (2019) · Zbl 1427.35258 · doi:10.1016/j.geomphys.2019.103508
[36] Fokas, AS; Lenells, J., The unified method: I. Nonlinearizable problems on the half-line, J. Phys. A Math. Theor., 45, 195201 (2012) · Zbl 1256.35044 · doi:10.1088/1751-8113/45/19/195201
[37] Lenells, J.; Fokas, AS, The unified method: II. NLS on the half-line t-periodic boundary conditions, J. Phys. A Math. Theor., 45, 195202 (2012) · Zbl 1256.35045 · doi:10.1088/1751-8113/45/19/195202
[38] Yan, ZY, An initial-boundary value problem for the integrable spin-1 Gross-Pitaevskii equations with a \(4\times 4\) Lax pair on the half-line, Chaos, 27, 053117 (2017) · Zbl 1394.35486
[39] Tian, SF, Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method, J. Differ. Equ., 262, 506-558 (2017) · Zbl 1432.35194 · doi:10.1016/j.jde.2016.09.033
[40] Geng, XG; Liu, H., The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation, J. Nonlinear Sci., 28, 739-763 (2018) · Zbl 1390.35325 · doi:10.1007/s00332-017-9426-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.