×

Nonlinear model of shear flow of thixotropic viscoelastoplastic continua taking into account the evolution of the structure and its analysis. (English. Russian original) Zbl 1515.76013

Mosc. Univ. Mech. Bull. 77, No. 5, 127-135 (2022); translation from Vestn. Mosk. Univ., Ser. I 77, No. 5, 31-39 (2022).
Using continuum mechanics, polymer melts, solutions and gels can be modelled as viscoelastic fluids satisfying a constitutive equation of Maxwell type like (1). Here, the authors continue their studies of viscoelasticity [Mosc. Univ. Mech. Bull. 71, No. 6, 132–136 (2016; Zbl 1464.74027); translation from Vestn. Mosk. Univ., Ser. I 71, No. 6, 36–41 (2016); Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 21, No. 1, 160–179 (2017; Zbl 1413.74026); Mosc. Univ. Mech. Bull. 73, No. 2, 39–42 (2018; Zbl 1471.74013); translation from Vestn. Mosk. Univ., Ser. I 73, No. 2, 59–63 (2018); Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana. Ser. Estestv. Nauki 6, 92–112 (2018; doi:10.18698/1812-3368-2018-6-92-112); Mech. Compos. Mater. 55, 195–210 (2019; doi:10.1007/s11029-019-09809-w); Russ. Metall. (Met.) 2019, 956–963 (2019; doi:10.1134/S0036029519100136)] where they consider a particular multidimensional formulation of Maxwell’s equation.
In the present work, the focus is on coupling the material parameters \(G,\eta\) of Maxwell equation with an evolution equation for the structural parameter \(w\), which is the percentage of polymer intersections that are effectively bonded through the so-called “cross-links”. This evolution equation models the competition between cross-linking \(w\to1\) at a time-scale \(1/k_1\) and the destruction of cross-links \(-g(\tau/\tau_c)w\) as a function of the degree of stress \(\tau/\tau_c\) at a time-scale \(1/k_2\) (\(k_1,k_2>0\) are some material parameters). It is shown that a unique equilibrium point exists, that it is stable, and the coupling makes enough physical sense for applications.

MSC:

76A10 Viscoelastic fluids
82D60 Statistical mechanics of polymers
Full Text: DOI

References:

[1] Bingham, E. C., Fluidity and Plasticity (1922), New York: McGraw-Hill, New York
[2] Reiner, M., Encyclopedia of Physics (1958), Berlin: Springer, Berlin
[3] Rehbinder, P. A., Surface Phenomena in Disperse Systems. Colloid Chemistry. Selected Works (1978), Moscow: Nauka, Moscow
[4] Coleman, B. D.; Makrovitz, A.; Noll, W., Viscometric Flows of Non-Newtonian Fluids: Theory and Experiment (1966), Berlin: Springer, Berlin · Zbl 0137.21903 · doi:10.1007/978-3-642-88655-3
[5] Frenkel’, Ya. I., Kinetic Theory of Liquids (1975), Leningrad: Nauka, Leningrad · Zbl 0063.01447
[6] Vinogradov, G. V.; Malkin, A. Ya., Rheology of Polymers (1977), Moscow: Khimiya, Moscow
[7] Bibik, E. E., Rheology of Disperse Systems (1981), Leningrad: Izd-vo Leningrad. Univ., Leningrad
[8] Bartenev, G. M.; Zelenev, Yu. V., Physics and Mechanics of Polymers (1983), Moscow: Vysshaya Shkola, Moscow
[9] Larson, R. G., Constitutive Equations for Polymer Melts and Solutions (1988)
[10] Ur’ev, N. B., Physicochemical Foundations of the Technology of Disperse Systems and Materials (1988), Moscow: Khimiya, Moscow
[11] Leonov, A. I.; Prokunin, A. N., Non-Linear Phenomena in Flows of Viscoelastic Polymer Fluids (1994), London: Chapman and Hall, London · doi:10.1007/978-94-011-1258-1
[12] Macosko, C., Rheology: Principles, Measurements and Applications (1994), New York: VCH, New York
[13] Schramm, G., A Practical Approach to Rheology and Rheometry (1994), Karlsruhe: Gebrueder Haake, Karlsruhe
[14] Rohn, C. L., Analytical Polymer Rheology (1995), Munich: Hanser Publishers, Munich
[15] Larson, R. G., Structure and Rheology of Complex Fluids (1999), New York: Oxford Press, New York
[16] Gupta, R. K., Polymer and Composite Rheology (2000), New York: Marcel Dekker, New York · doi:10.1201/9781482273700
[17] Tanner, R. I., Engineering Rheology (2000), Oxford: Oxford Univ. Press, Oxford · Zbl 1012.76002
[18] Malkin, A. Y.; Isayev, A. I., Rheology: Conceptions, Methods, Applications (2012), Toronto: ChemTec Publishing, Toronto
[19] Kirsanov, E. A.; Matveenko, V. N., Non-Newtonian Behavior of Structured Systems (2016), Moscow: Tekhnosfera, Moscow
[20] Stolin, A. M.; Malkin, A. Ya.; Merzhanov, A. G., Non-isothermal processes and methods of investigation in the chemistry and mechanics of polymers, Russ. Chem. Rev., 48, 798-811 (1979) · doi:10.1070/RC1979v048n08ABEH002412
[21] Prokunin, A. N., On the non-linear Maxwell-type defining equations for describing the motions of polymer liquids, J. Appl. Math. Mech., 48, 699-706 (1984) · Zbl 0598.76013 · doi:10.1016/0021-8928(84)90037-6
[22] Leonov, A. I., Constitutive equations for viscoelastic liquids: Formulation, analysis and comparison with data, Rheol. Ser., 8, 519-575 (1999) · doi:10.1016/S0169-3107(99)80040-9
[23] Stickel, J. J.; Powell, R. L., Fluid mechanics and rheology of dense suspensions, Annu. Rev. Fluid Mech., 37, 129-149 (2005) · Zbl 1117.76066 · doi:10.1146/annurev.fluid.36.050802.122132
[24] Mueller, S.; Llewellin, E. W.; Mader, H. M., The rheology of suspensions of solid particles, Proc. Roy. Soc. A., 466, 1201-1228 (2010) · doi:10.1098/rspa.2009.0445
[25] Malkin, A. Ya.; Patlazhan, S. A., Wall slip for complex liquids—Phenomenon and its causes, Adv. Colloid Interface Sci., 257, 42-57 (2018) · doi:10.1016/j.cis.2018.05.008
[26] Stolin, A. M.; Khudyaev, S. I.; Buchatskii, L. M., Theory of viscosity superanomaly of structured systems, Dokl. Akad. Nauk SSSR, 243, 430-433 (1978)
[27] Stolin, A. M.; Irzhak, V. I., Structurally nonuniform flow regimes in the process of polymer fiber formation, Polym. Sci., 35, 990-992 (1993)
[28] N. A. Belyaeva, A. M. Stolin, and L. S. Stelman, ‘‘Modes of firmly-phase extrusion of viscoelastic structured systems,’’ Inzh. Fiz., No. 1, 10-16 (2009).
[29] Brady, J. F.; Morris, J. F., Microstructure of strongly sheared suspensions and its impact on rheology and diffusion, J. Fluid Mech., 348, 103-139 (1997) · Zbl 0927.76006 · doi:10.1017/S0022112097006320
[30] Tucker, C. L.; Moldenaers, P., Microstructural evolution in polymer blends, Annu. Rev. Fluid Mech., 34, 177-210 (2002) · Zbl 1047.76503 · doi:10.1146/annurev.fluid.34.082301.144051
[31] Malkin, A. Ya.; Kulichikhin, V. G., Structure and rheology of highly concentrated emulsions: A modern look, Russ. Chem. Rev., 84, 803-825 (2015) · doi:10.1070/RCR4499
[32] K. A. Padmanabhan, R. A. Vasin, and F. U. Enikeev, Superplastic Flow: Phenomenology and Mechanics, Engineering Materials (Springer, Berlin, 2001). doi:10.1007/978-3-662-04367-7
[33] Eglit, M. E.; Yakubenko, A. E.; Zayko, J. S., Mathematical modeling of slope flows of non-Newtonian media, Proc. Steklov Inst. Math., 300, 219-229 (2018) · Zbl 1404.76012 · doi:10.1134/S0081543818010194
[34] Khokhlov, A. V., Properties of a nonlinear viscoelastoplastic model of Maxwell type with two material functions, Moscow Univ. Mech. Bull., 71, 132-136 (2016) · Zbl 1464.74027 · doi:10.3103/S0027133016060029
[35] Khokhlov, A. V., “The nonlinear Maxwell-type model for viscoelastoplastic materials: Simulation of temperature influence on creep, relaxation and strain-stress curves,” Vestn. Samar. Gos. Tekh. Univ. Ser. Fiz.-, Mat. Nauki, 21, 160-179 (2017) · Zbl 1413.74026 · doi:10.14498/vsgtu1524
[36] Khokhlov, A. V., A nonlinear Maxwell-type model for rheonomic materials: stability under symmetric cyclic loadings, Moscow Univ. Mech. Bull., 73, 39-42 (2018) · Zbl 1471.74013 · doi:10.3103/S0027133018020036
[37] Khokhlov, A. V., “Applicability indicators and identification techniques for a nonlinear Maxwell-type elasto-viscoplastic model using multi-step creep curves,” Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana. Ser. Estestv, Nauki, No., 6, 92-112 (2018) · doi:10.18698/1812-3368-2018-6-92-112
[38] Khokhlov, A. V., Applicability indicators and identification techniques for a nonlinear Maxwell-type elastoviscoplastic model using loading-unloading curves, Mech. Compos. Mater., 55, 195-210 (2019) · doi:10.1007/s11029-019-09809-w
[39] Khokhlov, A. V., Possibility to describe the alternating and non-monotonic time dependence of Poisson’s ratio during creep using a nonlinear Maxwell-type viscoelastoplasticity model, Russ. Metall. (Met.), 2019, 956-963 (2019) · doi:10.1134/S0036029519100136
[40] Khokhlov, A. V., Two-sided estimates for the relaxation function of the linear theory of heredity via the relaxation curves during the ramp-deformation and the methodology of identification, Mech. Solids, 53, 307-328 (2018) · doi:10.3103/S0025654418070105
[41] Khokhlov, A. V., Properties of the set of strain diagrams produced by Rabotnov nonlinear equation for rheonomous materials, Mech. Solids, 54, 384-399 (2019) · doi:10.3103/S002565441902002X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.