×

The uniform convergence of a DG method for a singularly perturbed Volterra integro-differential equation. (English) Zbl 1515.65335

Summary: The purpose of this work is to implement a discontinuous Galerkin (DG) method with a one-sided flux for a singularly perturbed Volterra integro-differential equation (VIDE) with a smooth kernel. First, the regularity property and a decomposition of the exact solution of the singularly perturbed VIDE with the initial condition are provided. Then the existence and uniqueness of the DG solution are proven. Then some appropriate projection-type interpolation operators and their corresponding approximation properties are established. Based on the decomposition of the exact solution and the approximation properties of the projection type interpolants, the DG method achieves the uniform convergence in the \(L^2\) norm with respect to the singular perturbation parameter \(\epsilon\) when the space of polynomials with degree \(p\) is used. A numerical experiment validates the theoretical results. Furthermore, an ultra-convergence order \(2p + 1\) at the nodes for the one-sided flux, uniform with respect to the singular perturbation parameter \(\epsilon\), is observed numerically.

MSC:

65R20 Numerical methods for integral equations
45J05 Integro-ordinary differential equations
45D05 Volterra integral equations
Full Text: DOI

References:

[1] Brunner, H., Collocation Methods for Volterra Integral and Related Functional Differential Equations (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 1059.65122 · doi:10.1017/CBO9780511543234
[2] Roos, H. G.; Stynes, M.; Tobiska, L., Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problem (2008), Berlin: Springer, Berlin · Zbl 1155.65087
[3] Ramos, J. I., Exponential techniques and implicit Runge-Kutta methods for singularly-perturbed Volterra integro-differential equations, Neural, Parallel & Sci Comput, 16, 387-404 (2008) · Zbl 1163.65100
[4] Amiraliyev, G. M.; Sevgin, A., Uniform difference method for singularly perturbed Volterra integro-differential equations, Appl Math Comput, 179, 731-741 (2006) · Zbl 1106.65112
[5] Cen Z D, Xi L F. A parameter robust numerical method for a singularly perturbed Volterra equation in security technologies//Processings of the 5th WSEAS Int Conference on Information Security and Privacy, Venice, Italy, 2006, November 20-22: 147-151
[6] Mbroh, N. A.; Noutchie, N. C O.; Masssoukou, R. Y M., A second order finite difference scheme for singularly perturbed Volterra integro-differential equation, Alex Eng J, 59, 2441-2447 (2020) · doi:10.1016/j.aej.2020.03.007
[7] Iragi, B. C.; Munyakazi, J. B., New parameter-uniform discretisations of singularly perturbed Volterra integro-differential equations, Appl Math Infor Sci, 12, 517-527 (2018) · doi:10.18576/amis/120306
[8] Iragi, B. C.; Munyakazi, J. B., A uniform convergent numerical method for a singularly perturbed Volterra integro-differential equation, Int J Comput Math, 97, 759-771 (2020) · Zbl 1480.65377 · doi:10.1080/00207160.2019.1585828
[9] Yapman, Ö.; Amiraliyev, G. M., A novel second-order fitted computational method for a singularly perturbed Volterra integro-differential equation, Int J Comput Math, 97, 1293-1302 (2020) · Zbl 1480.65383 · doi:10.1080/00207160.2019.1614565
[10] Long, G. Q.; Liu, L. B.; Huang, Z. T., Richardson extrapolation method on an adaptive grid for singularly perturbed Volterra integro-differential equations, Numer Funt Anal Opt, 42, 739-757 (2021) · Zbl 07379882 · doi:10.1080/01630563.2021.1928698
[11] Kauthen, J. P., Implicit Runge-Kutta methods for some integrodifferential-algebraic equations, Appl Numer Math, 13, 125-134 (1993) · Zbl 0787.65106 · doi:10.1016/0168-9274(93)90136-F
[12] Horvat, V.; Rogina, M., Tension spline collocation methods for singularly perturbed Volterra integro-differential and Volterra integral equations, Comput Appl Math, 140, 381-402 (2002) · Zbl 0998.65133 · doi:10.1016/S0377-0427(01)00517-9
[13] Tao, X.; Zhang, Y. H., The coupled method for singularly perturbed Volterra integro-differential equations, Adv Differ Equ, 2019, 1-16 (2019) · Zbl 1459.65248 · doi:10.1186/s13662-019-2139-8
[14] Reed W H, Hill T R. Triangular mesh methods for neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, 1973
[15] Cockburn, B.; Shu, C. W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J Numer Anal, 35, 2440-2463 (1998) · Zbl 0927.65118 · doi:10.1137/S0036142997316712
[16] Celiker, F.; Cockburn, B., Superconvergence of the numerical traces of discontinous Galerkin and hybridized methods for convection-diffusion problems in one space dimension, Math Comput, 76, 67-96 (2007) · Zbl 1109.65078 · doi:10.1090/S0025-5718-06-01895-3
[17] Xie, Z. Q.; Zhang, Z., Superconvergence of DG method for one-dimensional singularly perturbed problems, J Comput Math, 25, 185-200 (2007) · Zbl 1142.65388
[18] Xie, Z. Q.; Zhang, Z., Uniform superconvergence analysis of the discontinuous Galerkin method for a singularly perturbed problem in 1-D, Math Comput, 79, 35-45 (2010) · Zbl 1208.65118 · doi:10.1090/S0025-5718-09-02297-2
[19] Zeng, Z. K.; Chen, Y. P., A local discontinuous Galerkin method for fractional diffusion equations, Acta Mathematica Scientia, 43B, 2, 839-854 (2023) · Zbl 1515.65302 · doi:10.1007/s10473-023-0219-z
[20] Larsson, S.; Thomée, V.; Wahlbin, L. B., Numerical solution of parabolic integro-differential equations by the discontinuos Galerkin method, Math Comput, 87, 45-71 (1998) · Zbl 0896.65090 · doi:10.1090/S0025-5718-98-00883-7
[21] Brunner, H.; Schötzau, D., hp-Discontinous Galerkin time-stepping for Volterra integrodifferential equations, SIAM J Numer Anal, 44, 224-245 (2006) · Zbl 1116.65127 · doi:10.1137/040619314
[22] Chen, C. M.; Shih, T., Finite Element Methods for Integrodifferential Equations (1998), Singapore: World Scientific, Singapore · Zbl 0909.65142 · doi:10.1142/3594
[23] Kauthen, J. P., A survey of singularly perturbed Volterra equations, Appl Numer Math, 24, 95-114 (1997) · Zbl 0883.45003 · doi:10.1016/S0168-9274(97)00014-7
[24] Angell, J. S.; Olmstead, W. E., Singularly perturbed Volterra integral equations, SIAM J Numer Math, 47, 1, 1-14 (1987) · Zbl 0616.45009 · doi:10.1137/0147001
[25] Angell, J. S.; Olmstead, W. E., Singularly perturbed Volterra integral equations II, SIAM J Numer Math, 47, 6, 1150-1162 (1987) · Zbl 0635.45023 · doi:10.1137/0147077
[26] Bijura, A. M., Rigorous results on the asymptotic solutions of singularly perturbed nonlinear Volterra integral equations, J Integral Equ Appl, 14, 2, 119-149 (2002) · Zbl 1041.45007 · doi:10.1216/jiea/1031328363
[27] Bijura, A. M., Asymptotics of integrodifferential models with integrable kernels, Int J Math Math Sci, 2003, 25, 1577-1598 (2003) · Zbl 1062.45003 · doi:10.1155/S0161171203209091
[28] Jordan, G. S., A nonlinear singularly perturbed Volterra integrodifferential equation of nonconvolution type, Proc Roy Soc Edinburgh Sect A, 80, 235-247 (1978) · Zbl 0394.45003 · doi:10.1017/S030821050001026X
[29] Jordan, G. S., Some nonlinear singularly perturbed Volterra integro-differential equations//Londen S, Staffans O. Volterra Equations, 107-119 (1979), Berlin: Springer, Berlin · Zbl 0426.45007
[30] Lodge, A. S.; Mcleod, J. B.; Nohel, J. E., A nonlinear singularly perturbed Volterra integrodifferential equation occuring in polymer rheology, Proc Roy Soc Edinburgh Sect A, 80, 99-137 (1978) · Zbl 0395.45012 · doi:10.1017/S0308210500010167
[31] Mustapha, K.; Mclean, W., Discontinuous Galerkin method for an evolution equation with a memory term of positive type, Math Comput, 78, 268, 1975-1995 (2009) · Zbl 1198.65195 · doi:10.1090/S0025-5718-09-02234-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.