×

An inverse boundary value problem arising in nonlinear acoustics. (English) Zbl 1515.35358

Authors’ abstract: We consider an inverse problem arising in nonlinear ultrasound imaging. The propagation of ultrasound waves is modeled by a quasilinear wave equation. We make measurements at the boundary of the medium encoded in the Dirichlet-to-Neumann map and we show that these measurements determine the nonlinearity.

MSC:

35R30 Inverse problems for PDEs
35L20 Initial-boundary value problems for second-order hyperbolic equations
35L72 Second-order quasilinear hyperbolic equations

References:

[1] Acosta, S., Uhlmann, G., and Zhai, J., Nonlinear ultrasound imaging modeled by a Westervelt equation, SIAM J. Appl. Math., 82 (2022), pp. 408-426. · Zbl 1486.35458
[2] Anvari, A., Forsberg, F., and Samir, A. E., A primer on the physical principles of tissue harmonic imaging, RadioGraphics, 35 (2015), pp. 1955-1964, doi:10.1148/rg.2015140338.
[3] Aubry, J.-F. and Tanter, M., MR-guided transcranial focused ultrasound, in Advances in Experimental Medicine and Biology, Springer International Publishing, Berlin, 2016, pp. 97-111, doi:10.1007/978-3-319-22536-4_6.
[4] Balehowsky, T., Kujanpää, A., Lassas, M., and Liimatainen, T., An Inverse Problem for the Relativistic Boltzmann Equation, https://arxiv.org/abs/2011.09312, 2020. · Zbl 1510.35201
[5] Barreto, A. S. and Stefanov, P., Recovery of a cubic non-linearity in the wave equation in the weakly non-linear regime, Comm. Math. Phys., 392 (2022), pp. 25-53. · Zbl 1487.35453
[6] Barreto, A. S., Uhlmann, G., and Wang, Y., Inverse scattering for critical semilinear wave equations, Pure Appl. Anal.4 (2022), pp. 191-223. · Zbl 1500.35220
[7] Barreto, A. S. and Wang, Y., Singularities generated by the triple interaction of semilinear conormal waves, Anal. PDE, 14 (2021), pp. 135-170, doi:10.2140/apde.2021.14.135. · Zbl 1467.35010
[8] Beem, J., Global Lorentzian Geometry, 2nd ed., CRC Press, London, 2017.
[9] Belishev, M. I., An approach to multidimensional inverse problems for the wave equation, Dokl. Akad. Nauk SSSR, 297 (1987), pp. 524-527, doi:10.1007/bf00250727.
[10] Bär, C., Ginoux, N., and Pfäffle, F., Wave Equations on Lorentzian Manifolds and Quantization, European Mathematical Society Publishing House, Zürich, 2007, doi:10.4171/037 · Zbl 1118.58016
[11] Chen, X., Lassas, M., Oksanen, L., and Paternain, G. P., Detection of Hermitian connections in wave equations with cubic non-linearity, J. Eur. Math. Soc. (JEMS), 24 (2021), pp. 2191-2232. · Zbl 1487.35440
[12] Chen, X., Lassas, M., Oksanen, L., and Paternain, G. P., Inverse problem for the Yang-Mills equations, Comm. Math. Phys., 384 (2021), pp. 1187-1225, doi:10.1007/s00220-021-04006-0. · Zbl 1468.78005
[13] Dafermos, C. M. and Hrusa, W. J., Energy methods for quasilinear hyperbolic initial-boundary value problems. Applications to elastodynamics, Arch. Ration. Mech. Anal., 87 (1985), pp. 267-292, doi:10.1007/bf00250727. · Zbl 0586.35065
[14] de Hoop, M., Uhlmann, G., and Vasy, A., Diffraction from conormal singularities, Ann. Sci. Éc. Norm. Supér., 48 (2015), pp. 351-408, doi:10.24033/asens.2247. · Zbl 1322.58025
[15] de Hoop, M., Uhlmann, G., and Wang, Y., Nonlinear interaction of waves in elastodynamics and an inverse problem, Math. Ann., 376 (2019), pp. 765-795, doi:10.1007/s00208-018-01796-y. · Zbl 1441.35262
[16] de Hoop, M., Uhlmann, G., and Wang, Y., Nonlinear responses from the interaction of two progressing waves at an interface, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), pp. 347-363, doi:10.1016/j.anihpc.2018.04.005. · Zbl 1409.58018
[17] Demi, L. and Verweij, M., Nonlinear acoustics, in Comprehensive Biomedical Physics, Elsevier, Amsterdam, 2014, pp. 387-399, doi:10.1016/b978-0-444-53632-7.00218-5.
[18] Demi, M., The basics of ultrasound, in Comprehensive Biomedical Physics, Elsevier, Amsterdam, 2014, pp. 297-322, doi:10.1016/b978-0-444-53632-7.00213-6.
[19] Duistermaat, J. J., Fourier Integral Operators, Springer Basel AG, 2010, https://www.ebook.de/de/product/19293402/j_j_duistermaat_fourier_integral_operators.html. · Zbl 0272.47028
[20] Eyding, J., Fung, C., Niesen, W.-D., and Krogias, C., Twenty years of cerebral ultrasound perfusion imaging—is the best yet to come?, J. Clin. Med., 9 (2020), 816, doi:10.3390/jcm9030816.
[21] Fang, A., Allen, K. Y., Marino, B. S., and Brady, K. M., Neurologic outcomes after heart surgery, Pediatr. Anesth., 29 (2019), pp. 1086-1093, doi:10.1111/pan.13744.
[22] Feizmohammadi, A., Lassas, M., and Oksanen, L., Inverse Problems for Non-linear Hyperbolic Equations with Disjoint Sources and Receivers, https://arxiv.org/abs/2006.12158, 2020. · Zbl 1479.35946
[23] Feizmohammadi, A. and Oksanen, L., Recovery of zeroth order coefficients in non-linear wave equations, J. Inst. Math. Jussieu, 21 (2020), doi:10.1017/s1474748020000122.
[24] Gaynor, J. W.et al., Neurodevelopmental outcomes after cardiac surgery in infancy, Pediatrics, 135 (2015), pp. 816-825, doi:10.1542/peds.2014-3825.
[25] Greenleaf, A. and Uhlmann, G., Estimates for singular Radon transforms and pseudodifferential operators with singular symbols, J. Funct. Anal., 89 (1990), pp. 202-232, doi:10.1016/0022-1236(90)90011-9. · Zbl 0717.44001
[26] Greenleaf, A. and Uhlmann, G., Recovering singularities of a potential from singularities of scattering data, Comm. Math. Phys., 157 (1993), pp. 549-572, doi:10.1007/bf02096882. · Zbl 0790.35112
[27] Guillemin, V. and Uhlmann, G., Oscillatory integrals with singular symbols, Duke Math. J., 48 (1981), doi:10.1215/s0012-7094-81-04814-6. · Zbl 0462.58030
[28] Harrer, J. U., Second harmonic imaging: A new ultrasound technique to assess human brain tumour perfusion, J. Neurol. Neurosurg. Psychiatry, 74 (2003), pp. 333-342, doi:10.1136/jnnp.74.3.333.
[29] Hedrick, W. R. and Metzger, L., Tissue harmonic imaging, J. Diagn. Med. Sonog., 21 (2005), pp. 183-189, doi:10.1177/8756479305276477.
[30] Hintz, P. and Uhlmann, G., Reconstruction of Lorentzian manifolds from boundary light observation sets, Int. Math. Res. Not. IMRN, 2019 (2017), pp. 6949-6987, doi:10.1093/imrn/rnx320. · Zbl 1430.53022
[31] Hintz, P., Uhlmann, G., and Zhai, J., The Dirichlet-to-Neumann Map for a Semilinear Wave Equation on Lorentzian Manifolds, https://arxiv.org/abs/2103.08110, 2021.
[32] Hintz, P., Uhlmann, G., and Zhai, J., An inverse boundary value problem for a semilinear wave equation on Lorentzian manifolds, Int. Math. Res. Not. IMRN, 2022 (2022), pp. 13181-13211, doi:10.1093/imrn/rnab088. · Zbl 1496.35450
[33] Hörmander, L., The Analysis of Linear Partial Differential Operators I, Springer, Berlin, 2003, doi:10.1007/978-3-642-61497-2. · Zbl 1028.35001
[34] Hörmander, L., The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators, , Springer, Berlin, 2007. · Zbl 1115.35005
[35] Hörmander, L., The Analysis of Linear Partial Differential Operators IV, Springer, Berlin, 2009, doi:10.1007/978-3-642-00136-9. · Zbl 1178.35003
[36] Humphrey, V., Non-linear propagation for medical imaging, in Proceedings of WCU 2003, , pp. 73-80.
[37] Kaltenbacher, B. and Rundell, W., Determining the nonlinearity in an acoustic wave equation, Math. Methods Appl. Sci., 45 (2021), pp. 3554-3573, doi:10.1002/mma.8001. · Zbl 1529.35572
[38] Kaltenbacher, B. and Rundell, W., On the identification of the nonlinearity parameter in the Westervelt equation from boundary measurements, Inverse Probl. Imaging, 15 (2021), pp. 865-891. · Zbl 1472.35453
[39] Kurylev, Y., Lassas, M., Oksanen, L., and Uhlmann, G., Inverse problem for Einstein-scalar field equations, Duke Math. J., 171 (2022), pp. 3215-3282. · Zbl 1504.35647
[40] Kurylev, Y., Lassas, M., and Uhlmann, G., Inverse Problems in Spacetime I: Inverse Problems for Einstein Equations - Extended Preprint Version, https://arxiv.org/abs/1405.4503, 2014.
[41] Kurylev, Y., Lassas, M., and Uhlmann, G., Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations, Invent. Math., 212 (2018), pp. 781-857, doi:10.1007/s00222-017-0780-y. · Zbl 1396.35074
[42] Lai, R.-Y., Uhlmann, G., and Yang, Y., Reconstruction of the collision kernel in the nonlinear Boltzmann equation, SIAM J. Math. Anal., 53 (2021), pp. 1049-1069, doi:10.1137/20m1329366. · Zbl 1459.35400
[43] Lassas, M., Inverse problems for linear and non-linear hyperbolic equations, in Proceedings of the International Congress of Mathematicians, , World Scientific, River Edge, NJ, 2018, pp. 3751-3771. · Zbl 1447.35006
[44] Lassas, M., Uhlmann, G., and Wang, Y., Determination of Vacuum Space-Times from the Einstein-Maxwell Equations, https://arxiv.org/abs/1703.10704, 2017.
[45] Lassas, M., Uhlmann, G., and Wang, Y., Inverse problems for semilinear wave equations on Lorentzian manifolds, Comm. Math. Phys., 360 (2018), pp. 555-609, doi:10.1007/s00220-018-3135-7. · Zbl 1409.58019
[46] Lebeau, G., Propagation des ondes dans les variétés à coins, Ann. Sci. Éc. Norm. Supér., 30 (1997), pp. 429-497, doi:10.1016/s0012-9593(97)89928-4. · Zbl 0891.35072
[47] Melrose, R. B., The Atiyah-Patodi-Singer Index Theorem, MIT, Cambridge, MA, 1992. · Zbl 0796.58050
[48] Melrose, R. B. and Sjöstrand, J., Singularities of boundary value problems II, Comm. Pure Appl. Math., 35 (1982), pp. 129-168, doi:10.1002/cpa.3160350202. · Zbl 0546.35083
[49] Melrose, R. B. and Sjöstrand, J., Singularities of boundary value problems I, Comm. Pure Appl. Math., 31 (1978), pp. 593-617, doi:10.1002/cpa.3160310504. · Zbl 0368.35020
[50] Melrose, R. B. and Uhlmann, G. A., Lagrangian intersection and the Cauchy problem, Comm. Pure Appl. Math., 32 (1979), pp. 483-519, doi:10.1002/cpa.3160320403. · Zbl 0396.58006
[51] Piriou, A., Calcul symbolique non linéaire pour une onde conormale simple, Ann. Inst. Fourier, 38 (1988), pp. 173-187, doi:10.5802/aif.1153. · Zbl 0646.35012
[52] Soldati, G., Biomedical applications of ultrasound, in Comprehensive Biomedical Physics, Elsevier, Amsterdam, 2014, pp. 401-436, doi:10.1016/b978-0-444-53632-7.00219-7.
[53] Stefanov, P., Uhlmann, G., and Vasy, A., Boundary rigidity with partial data, J. Amer. Math. Soc., 29 (2016), pp. 299-332, doi:10.1090/jams/846. · Zbl 1335.53055
[54] Szabo, T. L., Nonlinear acoustics and imaging, in Diagnostic Ultrasound Imaging: Inside Out, Elsevier, Amsterdam, 2014, pp. 501-563, doi:10.1016/b978-0-12-396487-8.00012-4.
[55] Taylor, M. E., Reflection of singularities of solutions to systems of differential equations, Comm. Pure Appl. Math., 28 (1975), pp. 457-478, doi:10.1002/cpa.3160280403. · Zbl 0332.35058
[56] ter Haar, G., HIFU tissue ablation: Concept and devices, in Advances in Experimental Medicine and Biology, Springer International Publishing, Berlin, 2016, pp. 3-20, doi:10.1007/978-3-319-22536-4_1.
[57] Thomas, J. D. and Rubin, D. N., Tissue harmonic imaging: Why does it work?, J. Amer. Soc. Echocardiog., 11 (1998), pp. 803-808, doi:10.1016/s0894-7317(98)70055-0.
[58] Tzou, L., Determining Riemannian Manifolds from Nonlinear Wave Observations at a Single Point, https://arxiv.org/abs/2102.01841, 2021.
[59] Uhlig, F., On the block-decomposability of 1-parameter matrix flows and static matrices, Numer. Algorithms, 89 (2022), pp. 529-549. · Zbl 1486.15019
[60] Uhlmann, G. and Wang, Y., Determination of space-time structures from gravitational perturbations, Comm. Pure Appl. Math., 73 (2020), pp. 1315-1367, doi:10.1002/cpa.21882. · Zbl 1450.83002
[61] Uhlmann, G. and Zhai, J., Inverse problems for nonlinear hyperbolic equations, Discrete Contin. Dyn. Syst. Ser. A, 41 (2021), pp. 455-469, doi:10.3934/dcds.2020380. · Zbl 1458.35486
[62] Uhlmann, G. and Zhai, J., On an inverse boundary value problem for a nonlinear elastic wave equation, J. Math. Pures Appl., 153 (2021), pp. 114-136. · Zbl 1476.35338
[63] Uhlmann, G. and Zhang, Y., Inverse boundary value problems for wave equations with quadratic nonlinearities, J. Differential Equations, 309 (2022), pp. 558-607, doi:10.1016/j.jde.2021.11.033. · Zbl 1541.58019
[64] Vasy, A., Propagation of singularities for the wave equation on manifolds with corners, Ann. of Math., 168 (2008), pp. 749-812, doi:10.4007/annals.2008.168.749. · Zbl 1171.58007
[65] Wang, Y. and Zhou, T., Inverse problems for quadratic derivative nonlinear wave equations, Comm. Partial Differential Equations, 44 (2019), pp. 1140-1158, doi:10.1080/03605302.2019.1612908. · Zbl 1439.35572
[66] Webb, A. G., Introduction to Biomedical Imaging, John Wiley & Sons, New York, 2017.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.