×

Differentiable functions on modules and the equation \(\operatorname{Grad}(w)=\mathsf{M}\operatorname{Grad}(v)\). (English) Zbl 1515.30108

St. Petersbg. Math. J. 34, No. 2, 271-303 (2023) and Algebra Anal. 34, No. 2, 185-230 (2022).
Summary: Let \(A\) be a finite-dimensional, commutative algebra over \(\mathbb{R}\) or \(\mathbb{C} \). The notion of \(A\)-differentiable functions on \(A\) is extended to develop a theory of \(A\)-differentiable functions on finitely generated \(A\)-modules. Let \(U\) be an open, bounded and convex subset of such a module. An explicit formula is given for \(A\)-differentiable functions on \(U\) of prescribed class of differentiability in terms of real or complex differentiable functions, in the case when \(A\) is singly generated and the module is arbitrary and in the case when \(A\) is arbitrary and the module is free. Certain components of \(A\)-differentiable function are proved to have higher differentiability than the function itself. Let \(\mathsf{M}\) be a constant, square matrix. By using the formula mentioned above, a complete description of solutions of the equation \(\operatorname{grad}(w)=\mathsf{M}\operatorname{grad}(v)\) is given. A boundary value problem for generalized Laplace equations \(\mathsf{M}\nabla^2 v=\nabla^2v \mathsf{M}^{\mathsf{T} }\) is formulated and it is shown that for given boundary data there exists a unique solution, for which a formula is provided.

MSC:

30G35 Functions of hypercomplex variables and generalized variables
35N05 Overdetermined systems of PDEs with constant coefficients
46J15 Banach algebras of differentiable or analytic functions, \(H^p\)-spaces

References:

[1] P. M. Gadea and J. Mu\~noz Masqu\'e, \(A\)-differentiability and \(A\)-analyticity, Proc. Amer. Math. Soc. 124 (1996), no. 5, 1437-1443. 1301495 · Zbl 0846.30031
[2] N. Jacobson, Basic algebra. I, 2nd ed., W. H. Freeman and Co., New York, 1985. 0780184 · Zbl 0557.16001
[3] N. Jacobson, Basic algebra. II, 2nd ed., W. H. Freeman and Co., New York, 1989. 1009787 · Zbl 0694.16001
[4] M. Jodeit and P. J. Olver, On the equation \(\operatorname grad f=M grad g\), Proc. Roy. Soc. Edinburdh Sect. A 116 (1990), no. 3-4, 341-358. 1084738 · Zbl 0761.35017
[5] J. Jonasson, Multiplication for solutions of the equation \(\operatorname grad f = M grad g\), J. Geom. Phys. 59 (2009), no. 10, 1412-1430. 2560288 · Zbl 1175.35088
[6] P. W. Ketchum, Analytic functions of hypercomplex variables, Trans. Amer. Math. Soc. 30 (1928), no. 4, 641-667. 1501452 · JFM 55.0787.02
[7] S. G. Krantz and H. R. Parks, A primer of real analytic functions, Basler Lehrb\"ucher, vol. 4, Birkh\"auser Verlag, Basel, 1992. 1182792 · Zbl 0767.26001
[8] J. M. Lee, Introduction to smooth manifolds, Grad. Texts in Math., vol. 218, Springer-Verlag, New York, 2003. 1930091
[9] S. Mazur and W. Orlicz, Grundlegende Eigenschaften der polynomischen Operationen. Erste Mitteilung, Stud. Math. 5 (1934), no. 1, 50-68. · JFM 60.1074.03
[10] M. N. Rosculet, Func\c tii monogene pe algebre comutative, Editura Acad. Republ. Soc. Rom\^ania, Bucharest, 1975. 0463452 · Zbl 0305.35002
[11] A. Skowro\'nski and K. Yamagata, Frobenius algebras. I. Basic representation theory, EMS Textbooks in Math., European Math. Soc. (EMS), Zurich, 2011. 2894798 · Zbl 1260.16001
[12] W. C. Waterhouse, Analyzing some generalized analytic functions, Exposition. Math. 10 (1992), no. 2, 183-192. 1164532 · Zbl 0754.30037
[13] W. C. Waterhouse, Differentiable functions on algebras and the equation \(grad(w)=Mgrad(v)\), Proc. Roy. Soc. Edinburgh Sect. A 122 (1992), no. 3-4, 353-361. 1200205 · Zbl 0813.35064
[14] W. \.Zelazko, Banach algebras, Elsevier Pub. Co., Amsterdam, 1973. 0448079 · Zbl 0248.46037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.