×

Explicit numerical approximations for McKean-Vlasov neutral stochastic differential delay equations. (English) Zbl 1514.65009

Summary: This paper studies the numerical methods to approximate the solutions for a sort of McKean-Vlasov neutral stochastic differential delay equations (MV-NSDDEs) that the growth of the drift coefficients is super-linear. First, we obtain that the solution of MV-NSDDE exists and is unique. Then, we use a stochastic particle method, which is on the basis of the results about the propagation of chaos for a stochastic particle system, to deal with the approximation of the law. Furthermore, we construct the tamed Euler-Maruyama numerical scheme with respect to the corresponding particle system and obtain the rate of convergence. Combining propagation of chaos and the convergence rate of the numerical solution to the particle system, we get the convergence error between the numerical solution and exact solution of the original MV-NSDDE in the stepsize and number of particles.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
34K40 Neutral functional-differential equations
34K50 Stochastic functional-differential equations
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)

References:

[1] F. A. Antonelli Kohatsu-Higa, Rate of convergence of a particle method to the solution of the McKean-Vlasov equation, Ann. Appl. Probab., 12, 423-476 (2002) · Zbl 1015.60048 · doi:10.1214/aoap/1026915611
[2] J. X. Bao Huang, Approximations of McKean-Vlasov stochastic differential equations with irregular coefficients, J. Theoret. Probab., 35, 1187-1215 (2022) · Zbl 1493.65018 · doi:10.1007/s10959-021-01082-9
[3] J. Bao, C. Reisinger, P. Ren and W. Stockinger, First-order convergence of Milstein schemes for McKean-Vlasov equations and interacting particle systems, Proc. A., 477 (2021), Paper No. 20200258, 27 pp.
[4] S. Biswas, C. Kumar, G. D. Reis and C. Reisinger, Well-posedness and tamed Euler schemes for McKean-Vlasov equations driven by Lévy noise, preprint, 2020, arXiv: 2010.08585.
[5] M. D. Bossy Talay, Convergence rate for the approximation of the limit law of weakly interacting particles: Application to the Burgers equation, Ann. Appl. Probab., 6, 818-861 (1996) · Zbl 0860.60038 · doi:10.1214/aoap/1034968229
[6] M. D. Bossy Talay, A stochastic particle method for the McKean-Vlasov and the Burgers equation, Math. Comp., 66, 157-192 (1997) · Zbl 0854.60050 · doi:10.1090/S0025-5718-97-00776-X
[7] B. S. Boufoussi Hajji, Successive approximation of neutral functional stochastic differential equations with jumps, Statist. Probab. Lett., 80, 324-332 (2010) · Zbl 1196.60114 · doi:10.1016/j.spl.2009.11.006
[8] R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games with Applications I, \(1^{st}\) edition, Springer Nature, Switzerland, 2018. · Zbl 1422.91014
[9] D. E. Crisan McMurray, Smoothing properties of Mckean-Vlasov SDEs, Probab. Theory Related Fields, 172, 97-148 (2018) · Zbl 1393.60074 · doi:10.1007/s00440-017-0774-0
[10] G. S. G. Dos-Reis Engelhardt Smith, Simulation of McKean-Vlasov SDEs with super linear growth, IMA J. Numer. Anal., 42, 874-922 (2022) · Zbl 1481.65020 · doi:10.1093/imanum/draa099
[11] G. W. J. Dos-Reis Salkeld Tugaut, Freidlin-Wentzell LDP in path space for McKean-Vlasov equations and the functional iterated logarithm law, Ann. Appl. Probab., 29, 1487-1540 (2019) · Zbl 1466.60056 · doi:10.1214/18-AAP1416
[12] A. A. R. Eberle Guillin Zimmer, Quantitative Harris-type theorems for diffusions and McKean-Vlasov processes, Trans. Amer. Math. Soc., 371, 7135-7173 (2019) · Zbl 1481.60154 · doi:10.1090/tran/7576
[13] X. C. Huang Yuan, Comparison theorem for distribution dependent neutral SFDEs, J. Evol. Equ., 21, 653-670 (2021) · Zbl 1468.65008 · doi:10.1007/s00028-020-00595-w
[14] M. A. P. E. Hutzenthaler Jentzen Kloeden, Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467, 1563-1576 (2011) · Zbl 1228.65014 · doi:10.1098/rspa.2010.0348
[15] M. A. P. E. Hutzenthaler Jentzen Kloeden, Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients, Ann. Appl. Probab., 22, 1611-1641 (2012) · Zbl 1256.65003 · doi:10.1214/11-AAP803
[16] Y. Q. C. Ji Song Yuan, Neutral stochastic differential delay equations with locally monotone coefficients, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 24, 195-217 (2017) · Zbl 1365.34138
[17] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, \(1^{st}\) edition, Springer-Verlog, Berlin, 1992. · Zbl 0752.60043
[18] D. Lacker, On a strong form of propagation of chaos for McKean-Vlasov equations, Electron. Commun. Probab., 23 (2018), Paper No. 45, 11 pp. · Zbl 1396.65013
[19] X. X. G. Li Mao Yin, Explicit numerical approximations for stochastic differential equations in finite and infinite horizons: truncation methods, convergence in \(p\) th moment and stability, IMA J. Numer. Anal., 39, 847-892 (2019) · Zbl 1461.65007 · doi:10.1093/imanum/dry015
[20] X. Mao, Stochastic Differential Equations and Applications, \(2^{nd}\) edition, Horwood Publishing Limited, Chichester, 2008.
[21] H. P. McKean, A class of Markov processes associated with nonlinear parabolic equations, Proc. Nat. Acad. Sci. U.S.A., 56, 1907-1911 (1966) · Zbl 0149.13501 · doi:10.1073/pnas.56.6.1907
[22] H. P. McKean, Propagation of chaos for a class of non-linear parabolic equations, 1967 Stochastic Differential Equations, Lecture Series in Differential Equations, 7, Air Force Office Sci. Res., Arlington, Va., 1967, 41-57.
[23] H. P. McKean, Fluctuations in the kinetic theory of gases, Comm. Pure Appl. Math., 28, 435-455 (1975) · doi:10.1002/cpa.3160280402
[24] G. N. Milstein, Numerical Integration of Stochastic Differential Equations, \(1^{st}\) edition, Springer, Netherlands, 1995.
[25] P. J.-L. Ren Wu, Least squares estimator for path-dependent McKean-Vlasov SDES via discrete-time observations, Acta Math. Sci. Ser. B (Engl. Ed.), 39, 691-716 (2019) · Zbl 1499.62287 · doi:10.1007/s10473-019-0305-4
[26] S. Sabanis, Euler approximations with varying coefficients: The case of superlinearly growing diffusion coefficients, Ann. Appl. Probab., 26, 2083-2105 (2016) · Zbl 1352.60101 · doi:10.1214/15-AAP1140
[27] L. C. Tan Yuan, Strong convergence of a tamed theta scheme for NSDDEs with one-sided Lipschitz drift, Appl. Math. Comput., 338, 607-623 (2018) · Zbl 1427.65010 · doi:10.1016/j.amc.2018.06.051
[28] C. Villani, Optimal Transport: Old and New, \(1^{st}\) edition, Springer, Berlin, 2009. · Zbl 1156.53003
[29] F.-Y. Wang, Distribution dependent SDEs for Landau type equations, Stochastic Process. Appl., 128, 595-621 (2018) · Zbl 1380.60077 · doi:10.1016/j.spa.2017.05.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.