×

Hierarchical Bayesian modeling of marked non-homogeneous Poisson processes with finite mixtures and inclusion of covariate information. (English) Zbl 1514.62759

Summary: We investigate marked non-homogeneous Poisson processes using finite mixtures of bivariate normal components to model the spatial intensity function. We employ a Bayesian hierarchical framework for estimation of the parameters in the model, and propose an approach for including covariate information in this context. The methodology is exemplified through an application involving modeling of and inference for tornado occurrences.

MSC:

62-XX Statistics

Software:

INLA
Full Text: DOI

References:

[1] O.E. Barndorff-Nielsen, W.S. Kendall, and M.N.M. van Lieshout, Stochastic Geometry, Likelihood and Computation, Chapman & Hall, Boca Raton, 1999.
[2] V. Benes, K. Bodlak, J. Møller, and R.P. Waagepetersen, A case study on point process modelling in disease mapping, Image Anal. Stereol. 24 (2005), pp. 159-168. doi: 10.5566/ias.v24.p159-168 · Zbl 1160.62360 · doi:10.5566/ias.v24.p159-168
[3] O. Cappé, C.P. Robert, and T. Rydén, Reversible jump, birth-and-death and more general continuous time Markov chain Monte Carlo samplers, J. R. Statist. Soc. B 65 (2003), pp. 679-700. doi: 10.1111/1467-9868.00409 · Zbl 1063.62133 · doi:10.1111/1467-9868.00409
[4] A. Chakraborty and A.E. Gelfand, Measurement error in spatial point patterns, Bayesian Anal. 5 (2010), pp. 97-122. doi: 10.1214/10-BA504 · Zbl 1330.65028 · doi:10.1214/10-BA504
[5] N. Cressie, Statistics for Spatial Data, 2nd ed., Wiley, Boca Raton, 1993. · Zbl 1347.62005 · doi:10.1002/9781119115151
[6] N. Cressie and C.K. Wikle, Statistics for Spatio-Temporal Data, Wiley, Hoboken, NJ, 2011. · Zbl 1273.62017
[7] P. Dellaportas and I. Papageorgiou, Multivariate mixtures of normals with unknown number of components, Stat. Comput. 16 (2006), pp. 57-68. doi: 10.1007/s11222-006-5338-6 · doi:10.1007/s11222-006-5338-6
[8] A.P. Dempster, N.M. Laird, and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. R. Statist. Soc. B 39 (1977), pp. 1-38. · Zbl 0364.62022
[9] J. Diebolt and C.P. Robert, Estimation of finite mixture distributions by Bayesian sampling, J. R. Statist. Soc. B 56 (1994), pp. 363-375. · Zbl 0796.62028
[10] M. Escobar and M. West, Bayesian density estimation and inference using mixtures, J. Am. Statist. Assoc. 90 (1995), pp. 577-588. doi: 10.1080/01621459.1995.10476550 · Zbl 0826.62021
[11] P.J. Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika 82 (1995), pp. 711-732. doi: 10.1093/biomet/82.4.711 · Zbl 0861.62023 · doi:10.1093/biomet/82.4.711
[12] M.M. Hossain and A.B. Lawson, Approximate methods in Bayesian point process spatial models, Computational Stat. Data Anal. 53 (2009), pp. 2831-2842. doi: 10.1016/j.csda.2008.05.017 · Zbl 1453.62113 · doi:10.1016/j.csda.2008.05.017
[13] J.B. Illian and D.K. Hendrichsen, Gibbs point process models with mixed effects, Environmetrics, 2009, 10.1002/env.1008. · doi:10.1002/env.1008
[14] J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan, Statistical Analysis and Modelling of Spatial Point Patterns, Wiley, Chichester, 2008. · Zbl 1197.62135 · doi:10.1002/9780470725160
[15] J. Illian, S. Sørbye, and H. Rue, A toolbox for fitting complex spatial point process models using integrated nested Laplace approximation (INLA), Ann. Appl. Stat. 6(4) (2012), pp. 1499-1530. doi: 10.1214/11-AOAS530 · Zbl 1257.62093 · doi:10.1214/11-AOAS530
[16] A. Jasra, C.C. Holmes, and D.A. Stephens, Markov Chain Monte Carlo methods and the label switching problem in Bayesian mixture, Statist. Sci. 20 (2005), pp. 50-67. doi: 10.1214/088342305000000016 · Zbl 1100.62032 · doi:10.1214/088342305000000016
[17] C. Ji, D. Merly, T.B. Keplerz, and M. West, Spatial mixture modelling for unobserved point processes: Examples in immunofluorescence histology, Bayesian Anal. 4 (2009), pp. 297-316. doi: 10.1214/09-BA411 · Zbl 1330.62355 · doi:10.1214/09-BA411
[18] A. Kottas and B. Sanso, Bayesian mixture modeling for spatial poisson process intensities, with applications to extreme value analysis, Journal of Statistical Planning and Inference (Special Issue on Bayesian Inference for Stochastic Processes), 137 (2007), pp. 3151-3163. doi: 10.1016/j.jspi.2006.05.022 · Zbl 1114.62100 · doi:10.1016/j.jspi.2006.05.022
[19] S. Liang, B.P. Carlin, and A.E. Gelfand, Analysis of Minnesota colon and rectum cancer point patterns with spatial and nonspatial covariate information, Ann. Appl. Stat. 3 (2009), pp. 943-962. doi: 10.1214/09-AOAS240 · Zbl 1196.62143 · doi:10.1214/09-AOAS240
[20] F. Lindgren, H. Rue, and J. Lindström, An explicit link between Gaussian fields and Gaussian Markov random fields: The SPDE approach, J. R. Statist. Soc., Ser. B (2011), 10.1111/j.1467-9868.2011.00777.x. · Zbl 1274.62360 · doi:10.1111/j.1467-9868.2011.00777.x
[21] A.C. Micheas, C.K. Wikle, and D.R. Larsen, Random set modelling of three dimensional objects in a hierarchical Bayesian context, J. Stat. Comput. Simul (2012), 10.1080/00949655.2012.696647. · Zbl 1453.62157
[22] J. Møller and K. Helisova, Likelihood inference for unions of interacting discs, Scand. J. Stat. 37 (2010), pp. 365-381. doi: 10.1111/j.1467-9469.2009.00660.x · Zbl 1226.60016 · doi:10.1111/j.1467-9469.2009.00660.x
[23] J. Møller and R.P. Waagepetersen, Statistical Inference and Simulation for Spatial point Processes, Chapman and Hall, Boca Raton, FL, 2004. · Zbl 1044.62101
[24] J. Møller and R.P. Waagepetersen, Modern statistics for spatial point processes, Scand. J. Stat. (2007), 10.1111/j.1467-9469.2007.00569.x. · doi:10.1111/j.1467-9469.2007.00569.x
[25] S.L. Rathbun, S. Shiffman, and C.J. Gwaltney, Modelling the effects of partially observed covariates on Poisson process intensity, Biometrika (2007), 10.1093/biomet/asm009. · Zbl 1142.62391 · doi:10.1093/biomet/asm009
[26] S. Richardson and P.J. Green, On Bayesian analysis of mixtures with an unknown number of components (with discussion), J R. Statist. Soc. Ser. B 59 (1997), pp. 731-792. doi: 10.1111/1467-9868.00095 · Zbl 0891.62020 · doi:10.1111/1467-9868.00095
[27] C.P. Robert and G. Casella, Monte Carlo Statistical Methods, 2nd ed., Springer, Boca Raton, 2004. · Zbl 1096.62003 · doi:10.1007/978-1-4757-4145-2
[28] H. Rue, S. Martino, and N. Chopin, Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion), J. R. Statist. Soc. B 71 (2009), pp. 319-392. doi: 10.1111/j.1467-9868.2008.00700.x · Zbl 1248.62156 · doi:10.1111/j.1467-9868.2008.00700.x
[29] C. Scricciolo, Convergence rates for Bayesian density estimation of infinite-dimensional exponential families, Ann. Stat. 34 (2006), pp. 2897-2920, doi: 10.1214/009053606000000911 · Zbl 1114.62043 · doi:10.1214/009053606000000911
[30] J. Sethuraman, A constructive definition of Dirichlet priors, Statist. Sin. 4 (1994), pp. 639-650. · Zbl 0823.62007
[31] M. Stephens, Bayesian analysis of mixture models with an unknown number of components – an alternative to reversible jump methods, Ann. Stat. 28 (2000), pp. 40-74. doi: 10.1214/aos/1016120364 · Zbl 1106.62316 · doi:10.1214/aos/1016120364
[32] M. Tanner and W. Wong, The calculation of posterior distributions by data augmentation, J. Am. Statist. Assoc. 82 (1987), pp. 528-550. doi: 10.1080/01621459.1987.10478458 · Zbl 0619.62029
[33] C.K. Wikle and C.J. Anderson, Climatological analysis of tornado report counts using a hierarchical Bayesian spatiotemporal model, J. Geophys. Res. 108(24) (2003), pp. 1-15, 10.1029/2002JD002806. · doi:10.1029/2002JD002806
[34] R. Wolpert and K. Ickstadt, Poisson/Gamma random field models for spatial statistics, Biometrika 85 (1998), pp. 251-267. doi: 10.1093/biomet/85.2.251 · Zbl 0951.62082 · doi:10.1093/biomet/85.2.251
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.