×

The epsilon constant conjecture for higher dimensional unramified twists of \(\mathbb{Z}_p^r(1)\). (English) Zbl 1511.11095

Let \(p\) be a prime integer and \(N/K\) a finite Galois extension of \(p\)-adic number fields with group \(G:=\mathrm{Gal}(N/K)\). Denote the absolute Galois group of \(K\) by \(G_{K}\). Let \(\rho^{nr}:G_{K}\to Gl_{r}(Z_{p})\) be an \(r\)-dimensional unramified representation of the absolute Galois group \(G_{K}\) which is the restriction of an unramified representation and \(\rho_{Q_{p}}^{nr}: G_{Q_{p}}\to Gl_{r}(Z_{p})\). The authors of the paper under review generalize previous work of D. Izychev and O. Venjakob [J. Théor. Nombres Bordx. 28, No. 2, 485–521 (2016; Zbl 1411.11105)] in the tame case and of the authors in the weakly and wildly ramified case to prove the conjecture for all tame extensions \(N/K\) and a certain family of weakly and wildly ramified extensions \(N/K\). The paper is a lengthy well written and is an excellent source for interested researchers in the field.

MSC:

11S23 Integral representations
11S25 Galois cohomology
11S40 Zeta functions and \(L\)-functions

Citations:

Zbl 1411.11105

References:

[1] Benois, D. and Berger, L., Théorie d’Iwasawa des représentations cristallines. II. Comment. Math. Helv.83(2008), no. 3, 603-677. · Zbl 1157.11041
[2] Bley, W. and Cobbe, A., Equivariant epsilon constant conjectures for weakly ramified extensions. Math. Z.283(2016), nos. 3-4, 1217-1244. · Zbl 1378.11097
[3] Bley, W. and Cobbe, A., The equivariant local \(\varepsilon \) -constant conjecture for unramified twists of ℤ_p(1). Acta Arith.178(2017), no. 4, 313-383. · Zbl 1391.11149
[4] Bley, W. and Wilson, S. M. J., Computations in relative algebraic \(K\) -groups. LMS J. Comput. Math.12(2009), 166-194. · Zbl 1225.16003
[5] Bloch, S. and Kato, K., L-functions and Tamagawa numbers of motives. In: The Grothendieck Festschrift. Vol. I, Cartier, P., Illusie, L., Katz, N., Laumon, G., Manin, Y., Ribet, K. (eds.), Progress in Mathematics, 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333-400. · Zbl 0768.14001
[6] Breuning, M., Equivariant local epsilon constants and étale cohomology. J. London Math. Soc. (2)70(2004), no. 2, 289-306. · Zbl 1068.11075
[7] Breuning, M., Equivariant epsilon constants for Galois extensions of number fields and \(p\) -adic fields. Ph.D. thesis, King’s College London, 2004.
[8] Breuning, M. and Burns, D., Additivity of Euler characteristics in relative algebraic \(K\) -groups. Homol Homotopy Appl.7(2005), no. 3, 11-36. · Zbl 1085.18011
[9] Burns, D. and Nickel, A., Equivariant local epsilon constants and Iwasawa theory. Work in progress.
[10] Cobbe, A., A representative of \(R\varGamma \left(N,T\right)\) for some unramified twists of \({\mathbb{Z}}_p^r\) . Int. J. Number Theoryhttps://doi.org/10.1142/S1793042121500706
[11] Ellerbrock, N. and Nickel, A., On formal groups and Tate cohomology in local fields. Acta Arith.182(2018), no. 3, 285-299. · Zbl 1402.14061
[12] Fröhlich, A., Formal groups. Lecture Notes in Mathematics, 74, Springer, Berlin and New York, 1968. · Zbl 0177.04801
[13] Fröhlich, A., Galois module structure of algebraic integers. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 1, Springer, Berlin, 1983. · Zbl 0501.12012
[14] Hazewinkel, M., Formal groups and applications. Pure and Applied Mathematics, 78, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York and London, 1978. · Zbl 0454.14020
[15] Izychev, D. and Venjakob, O., Equivariant epsilon conjecture for 1-dimensional Lubin-Tate groups. J. Théor. Nombres Bordeaux28(2016), no. 2, 485-521. · Zbl 1411.11105
[16] Köck, B., Galois structure of Zariski cohomology for weakly ramified covers of curves. Amer. J. Math.126(2004), no. 5, 1085-1107. · Zbl 1095.14027
[17] Lubin, J. and Rosen, M. I., The norm map for ordinary abelian varieties. J. Algebra52(1978), no. 1, 236-240. · Zbl 0417.14035
[18] Martinet, J., Character theory and Artin L-functions. In: Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London, 1977, pp. 1-87. · Zbl 0359.12015
[19] Mazur, B., Rational points of abelian varieties with values in towers of number fields. Invent. Math.18(1972), 183-266. · Zbl 0245.14015
[20] Neukirch, J., Algebraic number theory [Algebraische Zahlentheorie]. Springer, Berlin, 1992. · Zbl 0747.11001
[21] Nickel, A., An equivariant Iwasawa main conjecture for local fields. Preprint, 2018. arXiv:1803.05743.
[22] Pickett, E. J. and Vinatier, S., Self-dual integral normal bases and Galois module structure. Compos. Math.149(2013), no. 7, 1175-1202. · Zbl 1292.11128
[23] Silverman, J. H., The arithmetic of elliptic curves. 2nd ed., Graduate Texts in Mathematics, 106, Springer, Dordrecht, 2009. · Zbl 1194.11005
[24] Swan, R. G., K-theory of finite groups and orders. Lecture Notes in Mathematics, 149, Springer, Berlin and New York, 1970. · Zbl 0205.32105
[25] Washington, L. C., Introduction to cyclotomic fields. 2nd ed., Graduate Texts in Mathematics, 83, Springer, New York, 1997. · Zbl 0966.11047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.