×

Sparsity reconstruction using nonconvex TGpV-shearlet regularization and constrained projection. (English) Zbl 1510.94029

Summary: In many sparsity-based image processing problems, compared with the convex \(\ell_1\) norm approximation of the nonconvex \(\ell_0\) quasi-norm, one can often preserve the structures better by taking full advantage of the nonconvex \(\ell_p\) quasi-norm \(( 0 \leq p < 1)\). In this paper, we propose a nonconvex \(\ell_p\) quasi-norm approximation in the total generalized variation (TGV)-shearlet regularization for image reconstruction. By introducing some auxiliary variables, the nonconvex nonsmooth objective function can be solved by an efficient alternating direction method of multipliers with convergence analysis. Especially, we use a generalized iterated shrinkage operator to deal with the \(\ell_p\) quasi-norm subproblem, which is easy to implement. Extensive experimental results show clearly that the proposed nonconvex sparsity approximation outperforms some state-of-the-art algorithms in both the visual and quantitative measures for different sampling ratios and noise levels.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
90C26 Nonconvex programming, global optimization
92C55 Biomedical imaging and signal processing

Software:

BADMM; RecPF
Full Text: DOI

References:

[1] Birns, S.; Kim, B.; Ku, S.; Stangl, K.; Needell, D., A practical study of longitudinal reference based compressed sensing for mri, arXiv preprint arXiv:1608.04728 (2016) · Zbl 1398.92137
[2] Guo, W.; Qin, J.; Yin, W., A new detail-preserving regularization scheme, SIAM Journal on Imaging Sciences, 7, 2, 1309-1334 (2014) · Zbl 1299.65130
[3] Candès, E. J.; Romberg, J.; Tao, T., Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory, 52, 2, 489-509 (2006) · Zbl 1231.94017
[4] Donoho, D. L., Compressed sensing, IEEE Transactions on Information Theory, 52, 4, 1289-1306 (2006) · Zbl 1288.94016
[5] Rudin, L. I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60, 1, 259-268 (1992) · Zbl 0780.49028
[6] Lustig, M.; Donoho, D.; Pauly, J. M., Sparse mri: The application of compressed sensing for rapid mr imaging, Magnetic Resonance in Medicine, 58, 6, 1182-1195 (2007)
[7] Chen, Y.; Hager, W.; Huang, F.; Phan, D.; Ye, X.; Yin, W., Fast algorithms for image reconstruction with application to partially parallel mr imaging, SIAM Journal on Imaging Sciences, 5, 1, 90-118 (2012) · Zbl 1247.90212
[8] Compton, R.; Osher, S.; Bouchard, L., Hybrid regularization for mri reconstruction with static field inhomogeneity correction, Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on, 650-655 (2012), IEEE
[9] Yang, J.; Zhang, Y.; Yin, W., A fast alternating direction method for tvl1-l2 signal reconstruction from partial fourier data, IEEE Journal of Selected Topics in Signal Processing, 4, 2, 288-297 (2010)
[10] Ye, X.; Chen, Y.; Huang, F., Computational acceleration for mr image reconstruction in partially parallel imaging, IEEE Transactions on Medical Imaging, 30, 5, 1055-1063 (2011)
[11] Chen, Y.; Ye, X.; Huang, F., A novel method and fast algorithm for mr image reconstruction with significantly under-sampled data, Inverse Problems and Imaging, 4, 2, 223-240 (2010) · Zbl 1201.62084
[12] Li, F.; Zeng, T., Variational image fusion with first and second-order gradient information, J. Comput. Math, 34, 200-222 (2016) · Zbl 1363.68217
[13] Lou, Y.; Zeng, T.; Osher, S.; Xin, J., A weighted difference of anisotropic and isotropic total variation model for image processing, SIAM Journal on Imaging Sciences, 8, 3, 1798-1823 (2015) · Zbl 1322.94019
[14] Xie, W.-S.; Yang, Y.-F.; Zhou, B., An admm algorithm for second-order tv-based mr image reconstruction, Numerical Algorithms, 67, 4, 827-843 (2014) · Zbl 1304.65161
[15] Bredies, K.; Kunisch, K.; Pock, T., Total generalized variation, SIAM Journal on Imaging Sciences, 3, 3, 492-526 (2010) · Zbl 1195.49025
[16] Guo, K.; Labate, D., Optimally sparse multidimensional representation using shearlets, SIAM Journal on Mathematical Analysis, 39, 1, 298-318 (2007) · Zbl 1197.42017
[17] Guo, K.; Labate, D.; Lim, W.-Q., Edge analysis and identification using the continuous shearlet transform, Applied and Computational Harmonic Analysis, 27, 1, 24-46 (2009) · Zbl 1169.42018
[18] Bian, W.; Chen, X., Linearly constrained non-lipschitz optimization for image restoration, SIAM Journal on Imaging Sciences, 8, 4, 2294-2322 (2015) · Zbl 1327.90299
[19] R.H. Chan, H.-X. Liang, Half-quadratic algorithm for \(\ell_p-\ell_q\) problems with applications to tv-\( \ell_1\) image restoration and compressive sensing (2014) 78-103.
[20] Wang, Y.; Yin, W.; Zeng, J., Global convergence of admm in nonconvex nonsmooth optimization, Journal of Scientific Computing, 78, 1, 29-63 (2019) · Zbl 1462.65072
[21] Wu, C.; Tai, X.-C., Augmented lagrangian method, dual methods, and split bregman iteration for rof, vectorial tv, and high order models., SIAM Journal on Imaging Sciences, 3, 3, 300-339 (2010) · Zbl 1206.90245
[22] Yang, J.-H.; Zhao, X.-L.; Ma, T.-H.; Chen, Y.; Huang, T.-Z.; Ding, M., Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization, Journal of Computational and Applied Mathematics, 363, 124-144 (2020) · Zbl 1429.94027
[23] Cheng, M.-H.; Huang, T.-Z.; Zhao, X.-L.; Ma, T.-H.; Huang, J., A variational model with hybrid hyper-laplacian priors for retinex, Applied Mathematical Modelling, 66, 305-321 (2019) · Zbl 1481.92033
[24] Zhang, H.; Wang, L.; Yan, B.; Li, L.; Cai, A.; Hu, G., Constrained total generalized p-variation minimization for few-view x-ray computed tomography image reconstruction, PloS one, 11, 2, e0149899 (2016)
[25] Esser, E.; Zhang, X.; Chan, T. F., A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science, SIAM Journal on Imaging Sciences, 3, 4, 1015-1046 (2010) · Zbl 1206.90117
[26] Ma, L.; Ng, M. K.; Yu, J.; Zeng, T., Efficient box-constrained tv-type-\( \ell^1\) algorithms for restoring images with impulse noise, Journal of computational mathematics, 249-270 (2013) · Zbl 1289.94012
[27] Ng, M. K.; Weiss, P.; Yuan, X., Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods, SIAM Journal on Scientific Computing, 32, 5, 2710-2736 (2010) · Zbl 1217.65071
[28] Zhu, Z.; Cai, G.; Wen, Y.-W., Adaptive box-constrained total variation image restoration using iterative regularization parameter adjustment method, International Journal of Pattern Recognition and Artificial Intelligence, 29, 07, 1554003 (2015)
[29] Glowinski, R.; Marroco, A., Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires, Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique, 9, 2, 41-76 (1975) · Zbl 0368.65053
[30] Han, D.; Sun, D.; Zhang, L., Linear rate convergence of the alternating direction method of multipliers for convex composite programming, Mathematics of Operations Research, 43, 2, 622-637 (2017) · Zbl 1440.90047
[31] Moudafi, A.; Gibali, A., \( \ell_1-\ell_2\) regularization of split feasibility problems, Numerical Algorithms, 78, 3, 739-757 (2018) · Zbl 1395.49014
[32] Yang, J.-H.; Zhao, X.-L.; Ji, T.-Y.; Ma, T.-H.; Huang, T.-Z., Low-rank tensor train for tensor robust principal component analysis, Applied Mathematics and Computation, 367, 124783 (2020) · Zbl 1433.90118
[33] Shama, M.-G.; Huang, T.-Z.; Liu, J.; Wang, S., A convex total generalized variation regularized model for multiplicative noise and blur removal, Applied Mathematics and Computation, 276, 109-121 (2016) · Zbl 1410.94016
[34] Hintermüller, M.; Wu, T., Nonconvex \(t v^q\)-models in image restoration: Analysis and a trust-region regularization-based superlinearly convergent solver, SIAM Journal on Imaging Sciences, 6, 3, 1385-1415 (2013) · Zbl 1281.65033
[35] Häuser, S.; Steidl, G., Fast finite shearlet transform, arXiv preprint arXiv:1202.1773 (2012)
[36] He, C.; Hu, C.-H.; Zhang, W., Adaptive shearlet-regularized image deblurring via alternating direction method, Multimedia and Expo (ICME), 2014 IEEE International Conference on, 1-6 (2014), IEEE
[37] Ito, K.; Kunisch, K., Optimal control with \(\ell^p ( \omega ) , p \in [ 0 , 1 ) ,\) control cost, SIAM Journal on Control and Optimization, 52, 2, 1251-1275 (2014) · Zbl 1306.49010
[38] Oh, S.; Woo, H.; Yun, S.; Kang, M., Non-convex hybrid total variation for image denoising, Journal of Visual Communication and Image Representation, 24, 3, 332-344 (2013)
[39] Xu, Z.; Zhang, H.; Wang, Y.; Chang, X.; Liang, Y., L1/2 regularization, Science China Information Sciences, 53, 6, 1159-1169 (2010) · Zbl 1497.62192
[40] Sutour, C.; Deledalle, C.-A.; Aujol, J.-F., Estimation of the noise level function based on a nonparametric detection of homogeneous image regions, SIAM Journal on Imaging Sciences, 8, 4, 2622-2661 (2015) · Zbl 1343.94015
[41] Liu, X.; Tanaka, M.; Okutomi, M., Single-image noise level estimation for blind denoising, IEEE Transactions on Image Processing, 22, 12, 5226-5237 (2013)
[42] Gabay, D.; Mercier, B., A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Computers & Mathematics with Applications, 2, 1, 17-40 (1976) · Zbl 0352.65034
[43] Guo, K.; Han, D.; Wu, T.-T., Convergence of alternating direction method for minimizing sum of two nonconvex functions with linear constraints, International Journal of Computer Mathematics, 94, 8, 1653-1669 (2017) · Zbl 1375.90239
[44] Wu, Z.; Li, M.; Wang, D. Z.; Han, D., A symmetric alternating direction method of multipliers for separable nonconvex minimization problems, Asia-Pacific Journal of Operational Research, 34, 06, 1750030 (2017) · Zbl 1383.90028
[45] Xie, Y.; Gu, S.; Liu, Y.; Zuo, W.; Zhang, W.; Zhang, L., Weighted schatten \(p\)-norm minimization for image denoising and background subtraction, IEEE transactions on image processing, 25, 10, 4842-4857 (2016) · Zbl 1408.94731
[46] Zuo, W.; Meng, D.; Zhang, L.; Feng, X.; Zhang, D., A generalized iterated shrinkage algorithm for non-convex sparse coding, Proceedings of the IEEE International Conference on Computer Vision, 217-224 (2013)
[47] Glowinski, R., Numerical Methods for Nonlinear Variational Problems (1984), Springer · Zbl 0575.65123
[48] Davis D, Y. W., Convergence Rate Analysis of Several Splitting Schemes (2016), In: Glowinski R., Osher S., Yin W. (eds) Splitting Methods in Communication, Imaging, Science, and Engineering. · Zbl 1372.65168
[49] Yang, W. H.; Han, D., Linear convergence of the alternating direction method of multipliers for a class of convex optimization problems., SIAM Journal on Numerical Analysis, 54, 2, 625-640 (2016) · Zbl 1342.90138
[50] Wang, F.; Xu, Z.; Xu, H.-K., Convergence of bregman alternating direction method with multipliers for nonconvex composite problems, arXiv preprint arXiv:1410.8625 (2014)
[51] Li, G.; Pong, T. K., Global convergence of splitting methods for nonconvex composite optimization, SIAM Journal on Optimization, 25, 4, 2434-2460 (2015) · Zbl 1330.90087
[52] Hong, M.; Luo, Z.-Q.; Razaviyayn, M., Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems, SIAM Journal on Optimization, 26, 1, 337-364 (2016) · Zbl 1356.49061
[53] Bolte, J.; Sabach, S.; Teboulle, M., Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Mathematical Programming, 146, 1-2, 459-494 (2014) · Zbl 1297.90125
[54] Wu, T.; Zhang, W.; Wang, D. Z.; Sun, Y., An efficient peaceman-rachford splitting method for constrained tgv-shearlet-based mri reconstruction, Inverse Problems in Science and Engineering, 27, 1, 115-133 (2019) · Zbl 1466.92099
[55] Zhang, X., A nonconvex relaxation approach to low-rank tensor completion, IEEE Transactions on Neural Networks and Learning Systems, 30, 6, 1659-1671 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.