×

Curved domain walls in the ferromagnetic nanostructures with Rashba and nonlinear dissipative effects. (English) Zbl 1510.35116

Summary: This work reveals an analytical investigation of the curved domain wall motion in ferromagnetic nanostructures in the framework of the extended Landau-Lifshitz-Gilbert equation. To be precise, the study delineates the description of curved domain wall motion in the steady-state dynamic regime for metallic and semiconductor ferromagnets. The study is done under the simultaneous action of the Rashba field and nonlinear dissipative effects described via the viscous-dry friction mechanism. By means of reductive perturbation technique and realistic assumption on the considered parameters, we establish an analytical expression of the steady domain wall velocity that depends on mean curvature of domain wall surfaces, nonlinear dissipation coefficients, Rashba parameter, external magnetic field, and spin-polarized electric current. In particular, it is observed that the domain wall velocity, mobility, threshold, and Walker breakdown can be manipulated by the combined mechanism of the Rashba field and nonlinear dissipation coefficients. Finally, the obtained analytical results are illustrated numerically for the curved domain walls through constant-curvature surfaces under-considered scenarios. The results presented herein are in qualitatively good agreement with the recent observations.

MSC:

35C20 Asymptotic expansions of solutions to PDEs
35Q60 PDEs in connection with optics and electromagnetic theory
74E15 Crystalline structure
78A25 Electromagnetic theory (general)
82D40 Statistical mechanics of magnetic materials
Full Text: DOI

References:

[1] Hubert, A.; Schfer, R., Magnetic Domains: the Analysis of Magnetic Microstructures (2008), Springer Science & Business Media
[2] Allwood, D. A.; Xiong, G.; Faulkner, C. C.; Atkinson, D.; Petit, D.; Cowburn, R. P., Magnetic domain-wall logic, Science, 309, 1688-1692 (2005)
[3] Chappert, C.; Fert, A.; Ngutyen van Dau, F., The emergence of spin electronics in data storage, Nat. Mater., 6, 813-823 (2007)
[4] Parkin, S. S.P.; Hayashi, M.; Thomas, L., Magnetic domain-wall racetrack memory, Science, 320, 5873, 190-194 (2000)
[5] Tanaka, M.; Ohya, S.; Bhattacharya, P.; Fornari, R.; Kamimura, H., Spintronic devices based on semiconductors, Comprehensive Semiconductor Science and Technology, vol. 6, 540-562 (2011), Elsevier, Amsterdam
[6] 245211
[7] Rashba, E. I., Properties of semiconductors with an extremum loop. I. Cyclotron and combinational resonance in a magnetic field perpendiculer to the plane of the loop, Sov. Phys. Solid State, 2, 1109 (1960)
[8] Yamanouchi, M.; Chiba, D.; Matsukura, F.; Dietl, T.; Ohno, H., Velocity of domain-wall motion induced by electrical current in the ferromagnetic semiconductor (Ga, Mn) as, Phys. Rev. Lett., 96, 9, 096601 (2006)
[9] Mougin, A.; Cormier, M.; Adam, J. P.; Metaxas, P. J.; Ferré, J., Domain wall mobility, stability and walker breakdown in magnetic nanowires, Europhys. Lett., 78, 5 (2007)
[10] Schryer, N. L.; Walker, I. R., The motion of \(180^\circ\) domain walls in uniform dc magnetic fields, J. Appl. Phys., 45, 5406-5421 (1974)
[11] Martinez, E., The influence of the Rashba field on the current-induced domain wall dynamics: a full micromagnetic analysis, including surface roughness and thermal effects, J. Appl. Phys., 111, 07D302 (2012)
[12] Martinez, E., Micromagnetic analysis of the Rashba field on current-induced domain wall propagation, J. Appl. Phys., 111, 033901 (2012)
[13] Ryu, J.; Seo, S. M.; Lee, K. J.; Lee, H. W., Rashba spin-orbit coupling effects on a current-induced domain wall motion, J. Magn. Magn. Mater., 324, 1449-1452 (2012)
[14] Visintin, A., Modified Landau-Lifshitz equation for ferromagnetism, Physica B, 233, 365-369 (1997)
[15] 014440(1)-014440
[16] Slonczewski, J. C., Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater., 159, L1-L7 (1996)
[17] Berger, L., Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B, 54, 13, 9353 (1996)
[18] Slonczewski, J. C., Current-driven excitation of magnetic multilayers, Magn. Magn. Mater., 159, L1 (1996)
[19] Consolo, G.; Curró, C.; Martinez, E.; Valenti, G., Mathematical modeling and numerical simulation of domain wall motion in magnetic nanostrips with crystallographic defects, Appl. Math. Model., 36, 4876-4886 (2012) · Zbl 1252.74003
[20] Dwivedi, S.; Dubey, S., On dynamics of current-induced static wall profiles in ferromagnetic nanowires governed by the Rashba field, Int. J. Appl. Comput. Math., 3, 1, 27-42 (2017) · Zbl 1392.35303
[21] Consolo, G.; Valenti, G., Traveling wave solutions of the one-dimensional extended Landau-Lifshitz-Gilbert equation with nonlinear dry and viscous dissipations, Acta Appl. Math., 122, 141-152 (2012) · Zbl 1263.78003
[22] Consolo, G.; Curró, C.; Valenti, G., Curved domain walls dynamics driven by magnetic field and electric current in hard ferromagnets, Appl. Math. Model., 38, 3, 1001-1010 (2014) · Zbl 1449.74088
[23] Consolo, G., Modeling magnetic domain-wall evolution in trilayers with structural inversion asymmetry, Ricerche Mat., 67, 1001-1015 (2018) · Zbl 1405.35213
[24] Consolo, G.; Valenti, G., Analytical solution of the strain-controlled magnetic domain wall motion in bilayer piezoelectric/magnetostrictive nanostructures, J. Appl. Phys., 121, 4, 043903 (2017)
[25] Consolo, G.; Valenti, G., Magnetic domain wall motion in nanoscale multiferroic devices under the combined action of magnetostriction, Rashba effect and dry-friction dissipation, Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali, 96, S1, 3 (2018)
[26] Dwivedi, S.; Singh, Y. P.; Consolo, G., On the statics and dynamics of transverse domain walls in bilayer piezoelectric-magnetostrictive nanostructures, Appl. Math. Model., 83, 13-29 (2020) · Zbl 1481.74170
[27] Podio-Guidugli, P.; Tomassetti, G., On the steady motions of a flat domain wall in a ferromagnet, Eur. Phys. J. B., 26, 191-198 (2002)
[28] De Ranieri, E.; Roy, P. E.; Fang, D., Piezoelectric control of the mobility of a domain wall driven by adiabatic and non-adiabatic torques, Nat. Mater., 12, 808-814 (2013)
[29] Landau, L.; Lifschitz, E., On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowjetunion, 8, 153, 153-169 (1935) · Zbl 0012.28501
[30] Gilbert, T. L., A lagrangian formulation of gyromagnetic equation of the magnetization field, Phys. Rev., 100, 1243-1255 (1955)
[31] Consolo, G.; Martinez, E., The effect of dry friction on domain wall dynamics: a micromagnetic study, Appl. Phys., 111, 07D312 (2012)
[32] Puliafito, V.; Consolo, G., On the travelling wave solution for the current-driven steady domain wall motion in magnetic nanostrips under the influence of Rashba field, Adv. Condens. Matter Phys. (2012)
[33] Dwivedi, S., On the dynamics of transverse domain walls in biaxial magnetic nanostrips with crystallographic defects, AIP Conference Proceedings, AIP Publishing,, vol. 1975, 030028 (2018)
[34] Miron, I. M.; Moore, T.; Szambolics, H., Fast current-induced domain-wall motion controlled by the Rashba effect, Nat. Mater., 10, 6, 419-423 (2011)
[35] Skomski, R., Domain-wall curvature and coercivity in pinning type Sm-Co magnets, J. Appl. Phys., 81, 5627-5629 (1997)
[36] Khvalkovskiy, A. V.; Cros, V.; Apalkov, D.; Nikitin, V.; Krounbi, M.; Zvezdin, K. A.; Anane, A.; Grollier, J.; Fert, A., Matching domain-wall configuration and spin-orbit torques for efficient domain-wall motion, Phys. Rev.B, 87, 020402(R) (2013)
[37] Zapperi, S.; Cizeau, P.; Durin, G.; Stanley, H. E., Dynamics of a ferromagnetic domain wall: avalanches, depinning transition, and the Barkhausen effect, Phys. Rev. B, 58, 6353-6366 (1998)
[38] Hagedorn, F. B., Dynamic conversion during magnetic bubble domain wall motion, J. Appl. Phys., 45, 3129-3140 (1974)
[39] Malozemoff, A. P.; Slonczewski, J. C., Magnetic Domain Walls in Bubble Materials (1979), Academic Press
[40] Zhai, J., Theoretical velocity of domain wall motion in ferromagnets, Phys. Lett. A, 242, 266-270 (1998)
[41] Podio-Guidugli, P.; Tomassetti, G., On the evolution of domain walls in hard ferromagnets, SIAM J. Appl. Math., 64, 1887-1906 (2004) · Zbl 1058.35058
[42] Filippov, B. N.; Kassan-Ogly, F. A., Nonlinear dynamic structure rearrangement of vortexlike domain walls in magnetic films with in-plane anisotropy, Physica D, 237, 1151-1156 (2008) · Zbl 1136.82355
[43] Gao, X. Y.; Guo, Y. J.; Shan, W. R., Shallow water in an open sea or a wide channel: Auto-and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system, Chaos Solitons Fractals, 138, 109950 (2020) · Zbl 1490.35314
[44] Gao, X. Y.; Guo, Y. J.; Shan, W. R., Water-wave symbolic computation for the Earth, Enceladus and Titan: the higher-order Boussinesq-Burgers system, auto- and non-auto-Bäcklund transformations, Appl. Math. Lett., 104, 106170 (2020) · Zbl 1437.86001
[45] Zhang, C. R.; Tian, B.; Qu, Q. X.; Liu, L.; Tian, H. Y., Vector bright solitons and their interactions of the couple Fokas-Lenells system in a birefringent optical fiber, Zeitschrift für angewandte Mathematik und Physik, 71, 1, 1-19 (2020) · Zbl 1508.35164
[46] Du, X. X.; Tian, B.; Qu, Q. X.; Yuan, Y. Q.; Zhao, X. H., Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma, Chaos Solitons Fractals, 134, 109709 (2020) · Zbl 1483.35177
[47] Chen, S. S.; Tian, B.; Chai, J.; Wu, X. Y.; Du, Z., Lax pair, binary Darboux transformations and dark-soliton interaction of a fifth-order defocusing nonlinear Schrödinger equation for the attosecond pulses in the optical fiber communication, Waves Random Complex Media, 30, 3, 389-402 (2020) · Zbl 1498.78032
[48] Wang, M.; Tian, B.; Sun, Y.; Lump, Z. Z., Mixed lump-stripe and rogue wave-stripe solutions of a (3+ 1)-dimensional nonlinear wave equation for a liquid with gas bubbles, Comput. Math. Appl., 79, 3, 576-587 (2020) · Zbl 1443.76233
[49] Gao, X. Y.; Guo, Y. J.; Shan, W. R., Hetero-Bäcklund transformation and similarity reduction of an extended (2+1)-dimensional coupled burgers system in fluid mechanics, Phys. Lett. A, 384, 31, 126788 (2020) · Zbl 1448.37084
[50] Gao, X. Y.; Guo, Y. J.; Shan, W. R., Cosmic dusty plasmas via a (3+1)-dimensional generalized variable-coefficient Kadomtsev-Petviashvili-Burgers-type equation: auto-Bäcklund transformations, solitons and similarity reductions plus observational/experimental supports, Waves Random Complex Media, 1-21 (2021)
[51] Abo, G. S.; Hong, Y.-K.; Park, J.; Lee, J.; Lee, W., Byoung-Chul Choi: definition of magnetic exchange length, IEEE Trans. Magn., 49, 8 (2013)
[52] Agarwal, S.; Carbou, G.; Labbè, S.; Prieur, C., Control of a network of magnetic ellipsoidal samples, Math. Control Relat. Fields, 1, 2, 129-147 (2011) · Zbl 1231.93013
[53] Dubey, S.; Dwivedi, S., On controllability of a two-dimensional network of ferromagnetic ellipsoidal samples, Differ. Equ. Dyn. Syst., 1-21 (2018)
[54] Osborn, J. A., Demagnetizing factors of the general ellipsoid, Phys. Rev., 67, 351, 11-12 (1945)
[55] Carbou, G., Stability of static walls for a three-dimensional model of ferromagnetic material, J. Math pures et Appl, 93, 2, 183-203 (2010) · Zbl 1191.35052
[56] Dwivedi, S.; Dubey, S., On the stability of steady-states of a two-dimensional system of ferromagnetic nanowires, J. Appl. Anal., 23, 2, 89-100 (2017) · Zbl 1382.35286
[57] Dwivedi, S.; Dubey, S., On the stability of static domain wall profiles in ferromagnetic thin film, Res. Math. Sci., 6, 1, 2 (2019) · Zbl 1430.35222
[58] Bertotti, G., Hysteresis in Magnetism (1998), Academic Press: Academic Press London
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.